Oracle Stored Procedures - Create a simple procedure

The SQL statement CREATE OR REPLACE PROCEDURE creates, compiles and saves a procedure on an Oracle database.

You need the CREATE PROCEDURE system privilege to create a procedure in your own schema.

 1 CREATE OR REPLACE PROCEDURE skeleton
 2 IS
 3 BEGIN
 4 NULL;
 5* END;

Type a front slash and press <enter> like this:

SQL> /
SQL*Plus informs you the procedure has been created successfully and presents the SQL command prompt:

Procedure created.
SQL>
Now your procedure is created, compiled and saved on your Oracle database.We have a procedure now, so let's run it.
Oracle/PLSQL: Creating Procedures (Advanced)

In Oracle, you can create your own procedures.

The syntax for a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter [,parameter])]
IS
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [procedure_name];

When you create a procedure or function, you may define parameters. There are three types of parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or function. The value of the parameter can not be overwritten by the procedure or function.

2. OUT - The parameter can not be referenced by the procedure or function, but the value of the parameter can be overwritten by the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or function and the value of the parameter can be overwritten by the procedure or function.

The following is a simple example of a procedure:

CREATE OR REPLACE Procedure UpdateCourse
 (name_in IN varchar2)
IS
 cnumber number;

 cursor c1 is
 select course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

insert into student_courses
(course_name,
 course_number)
values (name_in,
 cnumber);

commit;

close c1;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

Another example:

The following is a simple example of a procedure:

CREATE OR REPLACE PROCEDURE temp_proc

 IS

 cursor c1 is

 select eno,ename from emp;

 BEGIN

 for emprow in C1

 loop

 dbms_output.put_line(emprow.eno||':'||emprow.ename);

 end loop;

 end;

This procedure is called UpdateCourse. It has one parameter called name_in. The procedure will lookup the course_number based on course name. If it does not find a match, it defaults the course number to 99999. It then inserts a new record into the student_courses table.

Oracle Stored Procedures - Run a procedure
Run your procedure from the SQL*Plus command prompt with the EXECUTE command like this:

SQL> EXECUTE skeleton;
SQL*Plus assures you the procedure executed successfully:
PL/SQL procedure successfully completed.
The EXECUTE statement is easy and fast to type.

You can also run your procedure from within an unnamed PL/SQL block. At the SQL*Plus command prompt, it looks like this:

SQL> BEGIN
 2 SKELETON;
 3 END;
 4 /

PL/SQL procedure successfully completed.
By calling your procedure from within an unnamed PL/SQL block, you can even call your procedure twice, like this:

SQL> BEGIN
 2 SKELETON;
 3 SKELETON;
 4 END;
 5 /
PL/SQL procedure successfully completed.
SQL*Plus refers to the unnamed PL/SQL block when it says "PL/SQL procedure successfully completed." So even though we called the skeleton procedure twice, we only get one message back. So much for going the extra mile!

Now that we've run our procedure, what do we need to do if we want to change it?

Oracle Stored Procedures - Change a procedure
Let's write a procedure that outputs the string "Hello World!".

Open your skeleton.sql file in Notepad. Replace the NULL statement with the DBMS_OUTPUT.PUT_LINE procedure call. Your program should look like this:

SQL>
 1 CREATE OR REPLACE PROCEDURE skeleton
 2 IS
 3 BEGIN
 4 DBMS_OUTPUT.PUT_LINE('Hello World!');
 5* END;
SQL>

Execute the contents of the SQL*Plus buffer. Type a front slash and press <enter> like this:

SQL> /
SQL*Plus informs you the procedure has been created successfully and presents the SQL command prompt:

Procedure created.
SQL>
Run your procedure from the SQL*Plus command prompt with the EXECUTE command like this:

SQL> EXECUTE skeleton;
SQL*Plus assures you the procedure executed successfully:

PL/SQL procedure successfully completed.
But wait a minute! We wanted to see the string "Hello World!" Where did that go?

SQL*Plus is quirky. A SET command is needed before output is shown from the DBMS_OUTPUT.PUT_LINE procedure. So let's do that. At the SQL*Plus command prompt, type:

SQL> SET SERVEROUTPUT ON
SQL*Plus remains secretive and provides no feedback. Execute your procedure again. From the SQL*Plus command prompt, type:

SQL> EXECUTE skeleton;
Now it works! SQL*Plus rewards you with:

Hello World!
PL/SQL procedure successfully completed.
Suppose there is a problem with our procedure. Then what? We debug it, and that's what we're going to do next.

Oracle Stored Procedures - Debug a procedure
Let’s introduce a compilation error into your procedure declaration.

Open your skeleton.sql file in Notepad. Replace the DBMS_OUTPUT.PUT_LINE procedure call with the NULLL statement (notice the three "l"s!), an invalid PL/SQL statement. Your program should look like this:

SQL>
 1 CREATE OR REPLACE PROCEDURE skeleton
 2 IS
 3 BEGIN
 4 NULLL;
 5* END;
SQL>

Type a front slash and press <enter> like this:

SQL> /
Your procedure is compiled and saved on the database. However, SQL*Plus warns us of compilation errors:

Warning: Procedure created with compilation errors.
Let’s see the compilation errors. First, we need to run two SET commands to ensure the SQL*Plus buffer does not overflow.

At the SQL*Plus command prompt, type:

SQL> SET ARRAYSIZE 1
SQL> SET MAXDATA 60000
SQL>
Again, SQL*Plus remains secretive of the result. Let's see the errors. At the SQL*Plus command prompt, type:

SQL> SHOW ERRORS PROCEDURE skeleton
You should see the compilation error:

LINE/COL
--
ERROR
--
4/3
PLS-00201: identifier 'NULLL' must be declared
4/3
PL/SQL: Statement ignored
Oracle doesn't recognize the NULLL statement with the three "l"s. But Oracle won't hold it against you.

Change your procedure declaration in Notepad by inserting the proper NULL statement, and follow the steps to create your procedure again on the Oracle database.

What if you want to completely remove a procedure from your database? That's what we'll cover next.

Oracle Stored Procedures - Drop a procedure

If you no longer want a procedure in your database, you can remove it.

The SQL statement DROP PROCEDURE removes a procedure from a database.

Please use caution, because the effect is permanent!

DROP PROCEDURE is classified in SQL as a Data Definition Language (DDL) statement. Other examples of SQL statements in this category include CREATE, ALTER, RENAME and TRUNCATE.

Oracle issues an automatic COMMIT after a DDL statement is executed. Therefore, no rollback is possible after executing a DDL statement.

You need the CREATE PROCEDURE system privilege to create a procedure in your own schema.

At the SQL*Plus command prompt, issue the DROP PROCEDURE SQL statement to remove your procedure called skeleton:

SQL> DROP PROCEDURE skeleton;
SQL*Plus assures us the procedure has been removed:

Procedure dropped.
Now let's sum up it all up.

Oracle/PLSQL: IF-THEN-ELSE Statement

There are three different syntaxes for these types of statements.

Syntax #1: IF-THEN

IF condition THEN
 {...statements...}
END IF;

Syntax #2: IF-THEN-ELSE

IF condition THEN
 {...statements...}
ELSE
 {...statements...}
END IF;

Syntax #3: IF-THEN-ELSIF

IF condition THEN
 {...statements...}
ELSIF condition THEN
 {...statements...}
ELSE
 {...statements...}
END IF;

Here is an example of a function that uses the IF-THEN-ELSE statement:

CREATE OR REPLACE Function IncomeLevel
 (name_in IN varchar2)
 RETURN varchar2
IS
 monthly_value number(6);
 ILevel varchar2(20);

 cursor c1 is
 select monthly_income
 from employees
 where name = name_in;

 BEGIN

open c1;
fetch c1 into monthly_value;
close c1;

IF monthly_value <= 4000 THEN
 ILevel := 'Low Income';

ELSIF monthly_value > 4000 and monthly_value <= 7000 THEN
 ILevel := 'Avg Income';

ELSIF monthly_value > 7000 and monthly_value <= 15000 THEN
 ILevel := 'Moderate Income';

ELSE
 ILevel := 'High Income';

END IF;

 RETURN ILevel;

END;

Oracle/PLSQL: Case Statement

Starting in Oracle 9i, you can use the case statement within an SQL statement. It has the functionality of an IF-THEN-ELSE statement.

The syntax for the case statement is:

CASE [expression]
 WHEN condition_1 THEN result_1
 WHEN condition_2 THEN result_2
 ...
 WHEN condition_n THEN result_n
 ELSE result
END

expression is optional. It is the value that you are comparing to the list of conditions. (ie: condition_1, condition_2, ... condition_n)

condition_1 to condition_n must all be the same datatype. Conditions are evaluated in the order listed. Once a condition is found to be true, the case statement will return the result and not evaluate the conditions any further.

result_1 to result_n must all be the same datatype. This is the value returned once a condition is found to be true.

Note:

If no condition is found to be true, then the case statement will return the value in the ELSE clause.

If the ELSE clause is omitted and no condition is found to be true, then the case statement will return NULL.

You can have up to 255 comparisons in a case statement. Each WHEN ... THEN clause is considered 2 comparisons.

Applies To:

· Oracle 9i, Oracle 10g, Oracle 11g

For example:

You could use the case statement in an SQL statement as follows: (includes the expression clause)

select table_name,
CASE owner
 WHEN 'SYS' THEN 'The owner is SYS'
 WHEN 'SYSTEM' THEN 'The owner is SYSTEM'
 ELSE 'The owner is another value'
END
from all_tables;

Or you could write the SQL statement using the case statement like this: (omits the expression clause)

select table_name,
CASE
 WHEN owner='SYS' THEN 'The owner is SYS'
 WHEN owner='SYSTEM' THEN 'The owner is SYSTEM'
 ELSE 'The owner is another value'
END
from all_tables;

The above two case statements are equivalent to the following IF-THEN-ELSE statement:

IF owner = 'SYS' THEN
 result := 'The owner is SYS';

ELSIF owner = 'SYSTEM' THEN
 result := 'The owner is SYSTEM'';

ELSE
 result := 'The owner is another value';

END IF;

The case statement will compare each owner value, one by one.

One thing to note is that the ELSE clause within the case statement is optional. You could have omitted it. Let's take a look at the SQL statement above with the ELSE clause omitted.

Your SQL statement would look as follows:

select table_name,
CASE owner
 WHEN 'SYS' THEN 'The owner is SYS'
 WHEN 'SYSTEM' THEN 'The owner is SYSTEM'
END
from all_tables;

With the ELSE clause omitted, if no condition was found to be true, the case statement would return NULL.

For Example:

Here is an example that demonstrates how to use the case statement to compare different conditions:

select
CASE
 WHEN a < b THEN 'hello'
 WHEN d < e THEN 'goodbye'
END
from suppliers;

Frequently Asked Questions

Question: Can you create a case statement that evaluates two different fields? I want to return a value based on the combinations in two different fields.

Answer: Yes, below is an example of a case statement that evaluates two different fields.

select supplier_id,
CASE
 WHEN supplier_name = 'IBM' and supplier_type = 'Hardware' THEN 'North office'
 WHEN supplier_name = 'IBM' and supplier_type = 'Software' THEN 'South office'
END
from suppliers;

So if supplier_name field is IBM and the supplier_type field is Hardware, then the case statement will return North office. If the supplier_name field is IBM and the supplier_type is Software, the case statement will return South office.

Oracle/PLSQL: GOTO Statement

The GOTO statement causes the code to branch to the label after the GOTO statement.

For example:

GOTO label_name;

Then later in the code, you would place your label and code associated with that label.

Label_name: {statements}

Oracle/PLSQL: Loop Statement

The syntax for the LOOP statement is:

LOOP
 {.statements.}
END LOOP;

You would use a LOOP statement when you are not sure how many times you want the loop body to execute and you want the loop body to execute at least once.

The LOOP statement is terminated when it encounters either an EXIT statement or when it encounters an EXIT WHEN statement that evaluated to TRUE.

Let's take a look at an example:

LOOP
 monthly_value := daily_value * 31;
 EXIT WHEN monthly_value > 4000;
END LOOP;

In this example, the LOOP would terminate when the monthly_value exceeded 4000.

Oracle/PLSQL: FOR Loop

The syntax for the FOR Loop is:

FOR loop_counter IN [REVERSE] lowest_number..highest_number
LOOP
 {.statements.}
END LOOP;

You would use a FOR Loop when you want to execute the loop body a fixed number of times.

Let's take a look at an example.

FOR Lcntr IN 1..20
LOOP
 LCalc := Lcntr * 31;
END LOOP;

This example will loop 20 times. The counter will start at 1 and end at 20.

The FOR Loop can also loop in reverse. For example:

FOR Lcntr IN REVERSE 1..15
LOOP
 LCalc := Lcntr * 31;
END LOOP;

This example will loop 15 times. The counter will start at 15 and end at 1. (loops backwards)

Oracle/PLSQL: While Loop

The syntax for the WHILE Loop is:

WHILE condition
LOOP
 {.statements.}
END LOOP;

You would use a WHILE Loop when you are not sure how many times you will execute the loop body. Since the WHILE condition is evaluated before entering the loop, it is possible that the loop body may not execute even once.

Let's take a look at an example:

WHILE monthly_value <= 4000
LOOP
 monthly_value := daily_value * 31;
END LOOP;

In this example, the WHILE Loop would terminate once the monthly_value exceeded 4000.

Oracle/PLSQL: Repeat Until Loop

Oracle doesn't have a Repeat Until loop, but you can emulate one. The syntax for emulating a REPEAT UNTIL Loop is:

LOOP
 {.statements.}
 EXIT WHEN boolean_condition;
END LOOP;

You would use an emulated REPEAT UNTIL Loop when you do not know how many times you want the loop body to execute. The REPEAT UNTIL Loop would terminate when a certain condition was met.

Let's take a look at an example:

LOOP
 monthly_value := daily_value * 31;
 EXIT WHEN monthly_value > 4000;
END LOOP;

In this example, the LOOP would repeat until the monthly_value exceeded 4000.

Oracle/PLSQL: Exit Statement

The syntax for the EXIT statement is:

EXIT [WHEN boolean_condition];

The EXIT statement is most commonly used to terminate LOOP statements.

Let's take a look at an example:

LOOP
 monthly_value := daily_value * 31;
 EXIT WHEN monthly_value > 4000;
END LOOP;

In this example, the LOOP would terminate when the monthly_value exceeded 4000.

Oracle/PLSQL Topics

Oracle is a relational database technology.

PLSQL stands for "Procedural Language extensions to SQL", and can be used in Oracle databases. PLSQL is closely integrated into the SQL language, yet it adds programming constructs that are not native to SQL.

We've categorized Oracle and PLSQL into the following topics:

	Data Types
	SELECT Statement

	Literals (Constants)
	DISTINCT

	Declaring Variables
	COUNT / SUM / MIN / MAX

	Is Null / Is Not Null
	

	
	WHERE Clause

	Loops and Conditional Statements
	"AND" Condition

	Sequences (Autonumber)
	"OR" Condition

	Transactions
	Combining "AND" with "OR"

	Cursors
	

	Functions (Built-In) (By Category)
	"LIKE" Condition

	Functions (Built-In) (Alphabetical)
	"IN" Function

	Oracle System Tables
	BETWEEN Condition

	
	EXISTS Condition

	Primary Keys
	GROUP BY

	Foreign Keys
	HAVING

	Unique Constraints
	ORDER BY (sort by)

	Check Constraints
	

	Indexes
	JOINS (inner, outer)

	
	Subqueries

	Creating Functions
	

	Creating Procedures
	UNION Query

	Creating Triggers
	UNION ALL Query

	Exception Handling
	INTERSECT Query

	Oracle Error Messages
	MINUS Query

	
	

	Grant/Revoke Privileges
	UPDATE Statement

	Roles (set of privileges)
	INSERT Statement

	Change Password
	DELETE Statement

	
	

	Synonyms (create, drop)
	Tables (create, alter, drop, temp)

	
	Views

	Question & Answer
	

SQL Topics: Tables

CREATE TABLE Statement
The CREATE TABLE statement allows you to create and define a table.

The basic syntax for a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
 column2 datatype null/not null,
 ...
);

Each column must have a datatype. The column should either be defined as "null" or "not null" and if this value is left blank, the database assumes "null" as the default.

For example:

	CREATE TABLE suppliers

	(
	supplier_id
	number(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50)
	

);
	
	
	

Practice Exercise #1:

Create a customers table that stores customer ID, name, and address information. The customer ID should be the primary key for the table.

Solution:

The CREATE TABLE statement for the customers table is:

	CREATE TABLE customers

	(
	customer_id
	number(10)
	not null,

	
	customer_name
	varchar2(50)
	not null,

	
	address
	varchar2(50),
	

	
	city
	varchar2(50),
	

	
	state
	varchar2(25),
	

	
	zip_code
	varchar2(10),
	

	
	CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);
	
	
	

Practice Exercise #2:

Based on the departments table below, create an employees table that stores employee number, employee name, department, and salary information. The primary key for the employees table should be the employee number. Create a foreign key on the employees table that references the departments table based on the department_id field.

	CREATE TABLE departments

	(
	department_id
	number(10)
	not null,

	
	department_name
	varchar2(50)
	not null,

	
	CONSTRAINT departments_pk PRIMARY KEY (department_id)

);
	
	
	

Solution:

The CREATE TABLE statement for the employees table is:

	CREATE TABLE employees

	(
	employee_number
	number(10)
	not null,

	
	employee_name
	varchar2(50)
	not null,

	
	department_id
	number(10),
	

	
	salary
	number(6),
	

	
	CONSTRAINT employees_pk PRIMARY KEY (employee_number),

	
	CONSTRAINT fk_departments

	
	 FOREIGN KEY (department_id)

	
	 REFERENCES departments(department_id)

);
	
	
	

CREATE a table from another table
You can also create a table from an existing table by copying the existing table's columns.

It is important to note that when creating a table in this way, the new table will be populated with the records from the existing table (based on the SELECT Statement).

Syntax #1 - Copying all columns from another table
The basic syntax is:

CREATE TABLE new_table
 AS (SELECT * FROM old_table);

For example:

CREATE TABLE suppliers
 AS (SELECT *
 FROM companies
 WHERE id > 1000);

This would create a new table called suppliers that included all columns from the companies table.

If there were records in the companies table, then the new suppliers table would also contain the records selected by the SELECT statement.

Syntax #2 - Copying selected columns from another table
The basic syntax is:

CREATE TABLE new_table
 AS (SELECT column_1, column2, ... column_n FROM old_table);

For example:

CREATE TABLE suppliers
 AS (SELECT id, address, city, state, zip
 FROM companies
 WHERE id > 1000);

This would create a new table called suppliers, but the new table would only include the specified columns from the companies table.

Again, if there were records in the companies table, then the new suppliers table would also contain the records selected by the SELECT statement.

Syntax #3 - Copying selected columns from multiple tables
The basic syntax is:

CREATE TABLE new_table
 AS (SELECT column_1, column2, ... column_n
 FROM old_table_1, old_table_2, ... old_table_n);

For example:

CREATE TABLE suppliers
 AS (SELECT companies.id, companies.address, categories.cat_type
 FROM companies, categories
 WHERE companies.id = categories.id
 AND companies.id > 1000);

This would create a new table called suppliers based on columns from both the companies and categories tables.

Acknowledgements: We'd like to thank Dave M. for contributing to this solution!

Frequently Asked Questions

Question: How can I create a table from another table without copying any values from the old table?

Answer: To do this, the basic syntax is:

CREATE TABLE new_table
 AS (SELECT * FROM old_table WHERE 1=2);

For example:

CREATE TABLE suppliers
 AS (SELECT * FROM companies WHERE 1=2);

This would create a new table called suppliers that included all columns from the companies table, but no data from the companies table.

ALTER TABLE Statement
The ALTER TABLE statement allows you to rename an existing table. It can also be used to add, modify, or drop a column from an existing table.

Renaming a table
The basic syntax for renaming a table is:

ALTER TABLE table_name
 RENAME TO new_table_name;

For example:

ALTER TABLE suppliers
 RENAME TO vendors;

This will rename the suppliers table to vendors.

Adding column(s) to a table
Syntax #1
To add a column to an existing table, the ALTER TABLE syntax is:

ALTER TABLE table_name
 ADD column_name column-definition;

For example:

ALTER TABLE supplier
 ADD supplier_name varchar2(50);

This will add a column called supplier_name to the supplier table.

Syntax #2
To add multiple columns to an existing table, the ALTER TABLE syntax is:

	ALTER TABLE table_name

	ADD (
	column_1
	column-definition,

	
	column_2
	column-definition,

	
	...
	

	
	column_n
	column_definition);

For example:

	ALTER TABLE supplier

	ADD (
	supplier_name
	varchar2(50),

	
	city
	varchar2(45));

This will add two columns (supplier_name and city) to the supplier table.

Modifying column(s) in a table
Syntax #1
To modify a column in an existing table, the ALTER TABLE syntax is:

ALTER TABLE table_name
 MODIFY column_name column_type;

For example:

ALTER TABLE supplier
 MODIFY supplier_name varchar2(100) not null;

This will modify the column called supplier_name to be a data type of varchar2(100) and force the column to not allow null values.

Syntax #2
To modify multiple columns in an existing table, the ALTER TABLE syntax is:

	ALTER TABLE table_name

	MODIFY (
	column_1
	column_type,

	
	column_2
	column_type,

	
	...
	

	
	column_n
	column_type);

For example:

	ALTER TABLE supplier

	MODIFY (
	supplier_name
	varchar2(100)
	not null,

	
	city
	varchar2(75)
	
);

This will modify both the supplier_name and city columns.

Drop column(s) in a table
Syntax #1
To drop a column in an existing table, the ALTER TABLE syntax is:

ALTER TABLE table_name
 DROP COLUMN column_name;

For example:

ALTER TABLE supplier
 DROP COLUMN supplier_name;

This will drop the column called supplier_name from the table called supplier.

Rename column(s) in a table
(NEW in Oracle 9i Release 2)
Syntax #1
Starting in Oracle 9i Release 2, you can now rename a column.

To rename a column in an existing table, the ALTER TABLE syntax is:

ALTER TABLE table_name
 RENAME COLUMN old_name to new_name;

For example:

ALTER TABLE supplier
 RENAME COLUMN supplier_name to sname;

This will rename the column called supplier_name to sname.

Acknowledgements: Thanks to Dave M., Craig A., and Susan W. for contributing to this solution!

Practice Exercise #1:

Based on the departments table below, rename the departments table to depts.

	CREATE TABLE departments

	(
	department_id
	number(10)
	not null,

	
	department_name
	varchar2(50)
	not null,

	
	CONSTRAINT departments_pk PRIMARY KEY (department_id)

);
	
	
	

Solution:

The following ALTER TABLE statement would rename the departments table to depts:

ALTER TABLE departments
 RENAME TO depts;

Practice Exercise #2:

Based on the employees table below, add a column called salary that is a number(6) datatype.

	CREATE TABLE employees

	(
	employee_number
	number(10)
	not null,

	
	employee_name
	varchar2(50)
	not null,

	
	department_id
	number(10),
	

	
	CONSTRAINT employees_pk PRIMARY KEY (employee_number)

);
	
	
	

Solution:

The following ALTER TABLE statement would add a salary column to the employees table:

ALTER TABLE employees
 ADD salary number(6);

Practice Exercise #3:

Based on the customers table below, add two columns - one column called contact_name that is a varchar2(50) datatype and one column called last_contacted that is a date datatype.

	CREATE TABLE customers

	(
	customer_id
	number(10)
	not null,

	
	customer_name
	varchar2(50)
	not null,

	
	address
	varchar2(50),
	

	
	city
	varchar2(50),
	

	
	state
	varchar2(25),
	

	
	zip_code
	varchar2(10),
	

	
	CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);
	
	
	

Solution:

The following ALTER TABLE statement would add the contact_name and last_contacted columns to the customers table:

	ALTER TABLE customers

	ADD (
	contact_name
	varchar2(50),

	
	last_contacted
	date);

Practice Exercise #4:

Based on the employees table below, change the employee_name column to a varchar2(75) datatype.

	CREATE TABLE employees

	(
	employee_number
	number(10)
	not null,

	
	employee_name
	varchar2(50)
	not null,

	
	department_id
	number(10),
	

	
	CONSTRAINT employees_pk PRIMARY KEY (employee_number)

);
	
	
	

Solution:

The following ALTER TABLE statement would change the datatype for the employee_name column to varchar2(75):

ALTER TABLE employees
 MODIFY employee_name varchar2(75);

Practice Exercise #5:

Based on the customers table below, change the customer_name column to NOT allow null values and change the state column to a varchar2(2) datatype.

	CREATE TABLE customers

	(
	customer_id
	number(10)
	not null,

	
	customer_name
	varchar2(50),
	

	
	address
	varchar2(50),
	

	
	city
	varchar2(50),
	

	
	state
	varchar2(25),
	

	
	zip_code
	varchar2(10),
	

	
	CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);
	
	
	

Solution:

The following ALTER TABLE statement would modify the customer_name and state columns accordingly in the customers table:

	ALTER TABLE customers

	MODIFY (
	customer_name
	varchar2(50) not null,

	
	state
	varchar2(2));

Practice Exercise #6:

Based on the employees table below, drop the salary column.

	CREATE TABLE employees

	(
	employee_number
	number(10)
	not null,

	
	employee_name
	varchar2(50)
	not null,

	
	department_id
	number(10),
	

	
	salary
	number(6),
	

	
	CONSTRAINT employees_pk PRIMARY KEY (employee_number)

);
	
	
	

Solution:

The following ALTER TABLE statement would drop the salary column from the employees table:

ALTER TABLE employees
 DROP COLUMN salary;

Practice Exercise #7:

Based on the departments table below, rename the department_name column to dept_name.

	CREATE TABLE departments

	(
	department_id
	number(10)
	not null,

	
	department_name
	varchar2(50)
	not null,

	
	CONSTRAINT departments_pk PRIMARY KEY (department_id)

);
	
	
	

Solution:

The following ALTER TABLE statement would rename the department_name column to dept_name in the departments table:

ALTER TABLE departments
 RENAME COLUMN department_name to dept_name;

DROP TABLE Statement
The DROP TABLE statement allows you to remove a table from the database.

The basic syntax for the DROP TABLE statement is:

DROP TABLE table_name;

For example:

DROP TABLE supplier;

This would drop table called supplier.

Global Temporary tables
Local Temporary tables
PL/SQL
Oracle/PLSQL Topics

Oracle is a relational database technology.

PLSQL stands for "Procedural Language extensions to SQL", and can be used in Oracle databases. PLSQL is closely integrated into the SQL language, yet it adds programming constructs that are not native to SQL.

We've categorized Oracle and PLSQL into the following topics:

	Data Types
	SELECT Statement

	Literals (Constants)
	DISTINCT

	Declaring Variables
	COUNT / SUM / MIN / MAX

	Is Null / Is Not Null
	

	
	WHERE Clause

	Loops and Conditional Statements
	"AND" Condition

	Sequences (Autonumber)
	"OR" Condition

	Transactions
	Combining "AND" with "OR"

	Cursors
	

	Functions (Built-In) (By Category)
	"LIKE" Condition

	Functions (Built-In) (Alphabetical)
	"IN" Function

	Oracle System Tables
	BETWEEN Condition

	
	EXISTS Condition

	Primary Keys
	GROUP BY

	Foreign Keys
	HAVING

	Unique Constraints
	ORDER BY (sort by)

	Check Constraints
	

	Indexes
	JOINS (inner, outer)

	
	Subqueries

	Creating Functions
	

	Creating Procedures
	UNION Query

	Creating Triggers
	UNION ALL Query

	Exception Handling
	INTERSECT Query

	Oracle Error Messages
	MINUS Query

	
	

	Grant/Revoke Privileges
	UPDATE Statement

	Roles (set of privileges)
	INSERT Statement

	Change Password
	DELETE Statement

	
	

	Synonyms (create, drop)
	Tables (create, alter, drop, temp)

	
	Views

	Question & Answer
	

Oracle/PLSQL: Data Types

The following is a list of datatypes available in Oracle.

Character Datatypes
	Data Type
Syntax
	Oracle 9i
	Oracle 10g
	Oracle 11g
	Explanation
(if applicable)

	char(size)
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Where size is the number of characters to store. Fixed-length strings. Space padded.

	nchar(size)
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Where size is the number of characters to store. Fixed-length NLS string Space padded.

	nvarchar2(size)
	Maximum size of 4000 bytes.
	Maximum size of 4000 bytes.
	Maximum size of 4000 bytes.
	Where size is the number of characters to store. Variable-length NLS string.

	varchar2(size)
	Maximum size of 4000 bytes.
	Maximum size of 4000 bytes.
	Maximum size of 4000 bytes.
	Where size is the number of characters to store. Variable-length string.

	long
	Maximum size of 2GB.
	Maximum size of 2GB.
	Maximum size of 2GB.
	Variable-length strings. (backward compatible)

	raw
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Maximum size of 2000 bytes.
	Variable-length binary strings

	long raw
	Maximum size of 2GB.
	Maximum size of 2GB.
	Maximum size of 2GB.
	Variable-length binary strings. (backward compatible)

Numeric Datatypes
	Data Type
Syntax
	Oracle 9i
	Oracle 10g
	Oracle 11g
	Explanation
(if applicable)

	number(p,s)
	Precision can range from 1 to 38.
Scale can range from -84 to 127.
	Precision can range from 1 to 38.
Scale can range from -84 to 127.
	Precision can range from 1 to 38.
Scale can range from -84 to 127.
	Where p is the precision and s is the scale.

For example, number(7,2) is a number that has 5 digits before the decimal and 2 digits after the decimal.

	numeric(p,s)
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Where p is the precision and s is the scale.

For example, numeric(7,2) is a number that has 5 digits before the decimal and 2 digits after the decimal.

	float
	
	
	
	

	dec(p,s)
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Where p is the precision and s is the scale.

For example, dec(3,1) is a number that has 2 digits before the decimal and 1 digit after the decimal.

	decimal(p,s)
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Precision can range from 1 to 38.
	Where p is the precision and s is the scale.

For example, decimal(3,1) is a number that has 2 digits before the decimal and 1 digit after the decimal.

	integer
	
	
	
	

	int
	
	
	
	

	smallint
	
	
	
	

	real
	
	
	
	

	double precision
	
	
	
	

Date/Time Datatypes
	Data Type
Syntax
	Oracle 9i
	Oracle 10g
	Oracle 11g
	Explanation
(if applicable)

	date
	A date between Jan 1, 4712 BC and Dec 31, 9999 AD.
	A date between Jan 1, 4712 BC and Dec 31, 9999 AD.
	A date between Jan 1, 4712 BC and Dec 31, 9999 AD.
	

	timestamp (fractional seconds precision)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	Includes year, month, day, hour, minute, and seconds.

For example:
timestamp(6)

	timestamp (fractional seconds precision) with time zone
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	Includes year, month, day, hour, minute, and seconds; with a time zone displacement value.

For example:
timestamp(5) with time zone

	timestamp (fractional seconds precision) with local time zone
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	fractional seconds precision must be a number between 0 and 9. (default is 6)
	Includes year, month, day, hour, minute, and seconds; with a time zone expressed as the session time zone.

For example:
timestamp(4) with local time zone

	interval year
(year precision)
to month
	year precision is the number of digits in the year. (default is 2)
	year precision is the number of digits in the year. (default is 2)
	year precision is the number of digits in the year. (default is 2)
	Time period stored in years and months.

For example:
interval year(4) to month

	interval day
(day precision)
to second (fractional seconds precision)
	day precision must be a number between 0 and 9. (default is 2)

fractional seconds precision must be a number between 0 and 9. (default is 6)
	day precision must be a number between 0 and 9. (default is 2)

fractional seconds precision must be a number between 0 and 9. (default is 6)
	day precision must be a number between 0 and 9. (default is 2)

fractional seconds precision must be a number between 0 and 9. (default is 6)
	Time period stored in days, hours, minutes, and seconds.

For example:
interval day(2) to second(6)

Large Object (LOB) Datatypes
	Data Type
Syntax
	Oracle 9i
	Oracle 10g
	Oracle 11g
	Explanation
(if applicable)

	bfile
	Maximum file size of 4GB.
	Maximum file size of 232-1 bytes.
	Maximum file size of 264-1 bytes.
	File locators that point to a binary file on the server file system (outside the database).

	blob
	Store up to 4GB of binary data.
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage).
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage).
	Stores unstructured binary large objects.

	clob
	Store up to 4GB of character data.
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character data.
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character data.
	Stores single-byte and multi-byte character data.

	nclob
	Store up to 4GB of character text data.
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data.
	Store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data.
	Stores unicode data.

Rowid Datatypes
	Data Type
Syntax
	Oracle 9i
	Oracle 10g
	Oracle 11g
	Explanation
(if applicable)

	rowid
	The format of the rowid is: BBBBBBB.RRRR.FFFFF

Where BBBBBBB is the block in the database file;
RRRR is the row in the block;
FFFFF is the database file.
	The format of the rowid is: BBBBBBB.RRRR.FFFFF

Where BBBBBBB is the block in the database file;
RRRR is the row in the block;
FFFFF is the database file.
	The format of the rowid is: BBBBBBB.RRRR.FFFFF

Where BBBBBBB is the block in the database file;
RRRR is the row in the block;
FFFFF is the database file.
	Fixed-length binary data. Every record in the database has a physical address or rowid.

	urowid(size)
	
	
	
	Universal rowid.

Where size is optional.

Oracle/PLSQL: Literals

A literal is the same as a constant. We'll cover three types of literals - text literals, integer literals, and number literals

Text literals are always surrounded by single quotes ('). For example:

'Hewlett Packard'
'28-MAY-03'

Integer literals can be up to 38 digits. Integer literals can be either positive numbers or negative numbers. If you do not specify a sign, then a positive number is assumed. Here are some examples of valid integer literals:

23
+23
-23

Number literals can be up to 38 digits. Number literals can be either positive or negative numbers. If you do not specify a sign, then a positive number is assumed. Here are some examples of valid number literals:

25
+25
-25
25e-04
25.607

Oracle/PLSQL: Declaring Variables

The syntax for declaring variables is:

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

For example:

Declaring a variable:

LDescription varchar2(40);

Declaring a constant:

LTotal CONSTANT numeric(8,1) := 8363934.1;

Declaring a variable with an initial value (not a constant):

LType varchar2(10) := 'Example';

Oracle/PLSQL: IS NULL

In PLSQL to check if a value is null, you must use the "IS NULL" syntax.

For example,

IF Lvalue IS NULL then

 ...

END IF;

If Lvalue contains a null value, the "IF" expression will evaluate to TRUE.

You can also use "IS NULL" in an SQL statement. For example:

select * from suppliers
where supplier_name IS NULL;

This will return all records from the suppliers table where the supplier_name contains a null value.

To learn how to check for a value that is not null, click here.

Oracle/PLSQL: IS NOT NULL

In PLSQL to check if a value is not null, you must use the "IS NOT NULL" syntax.

For example,

IF Lvalue IS NOT NULL then

 ...

END IF;

If Lvalue does not contain a null value, the "IF" expression will evaluate to TRUE.

You can also use "IS NOT NULL" in an SQL statement. For example:

select * from suppliers
where supplier_name IS NOT NULL;

This will return all records from the suppliers table where the supplier_name does not contain a null value.

To learn how to check for a value that is null, click here.

Oracle/PLSQL: Sequences (Autonumber)

In Oracle, you can create an autonumber field by using sequences. A sequence is an object in Oracle that is used to generate a number sequence. This can be useful when you need to create a unique number to act as a primary key.

The syntax for a sequence is:

CREATE SEQUENCE sequence_name
 MINVALUE value
 MAXVALUE value
 START WITH value
 INCREMENT BY value
 CACHE value;

For example:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 START WITH 1
 INCREMENT BY 1
 CACHE 20;

This would create a sequence object called supplier_seq. The first sequence number that it would use is 1 and each subsequent number would increment by 1 (ie: 2,3,4,...}. It will cache up to 20 values for performance.

If you omit the MAXVALUE option, your sequence will automatically default to:

MAXVALUE 999999999999999999999999999

So you can simplify your CREATE SEQUENCE command as follows:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 CACHE 20;

Now that you've created a sequence object to simulate an autonumber field, we'll cover how to retrieve a value from this sequence object. To retrieve the next value in the sequence order, you need to use nextval.

For example:

supplier_seq.nextval

This would retrieve the next value from supplier_seq. The nextval statement needs to be used in an SQL statement. For example:

INSERT INTO suppliers
(supplier_id, supplier_name)
VALUES
(supplier_seq.nextval, 'Kraft Foods');

This insert statement would insert a new record into the suppliers table. The supplier_id field would be assigned the next number from the supplier_seq sequence. The supplier_name field would be set to Kraft Foods.

Frequently Asked Questions

One common question about sequences is:

Question: While creating a sequence, what does cache and nocache options mean? For example, you could create a sequence with a cache of 20 as follows:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 CACHE 20;

Or you could create the same sequence with the nocache option:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 NOCACHE;

Answer: With respect to a sequence, the cache option specifies how many sequence values will be stored in memory for faster access.

The downside of creating a sequence with a cache is that if a system failure occurs, all cached sequence values that have not be used, will be "lost". This results in a "gap" in the assigned sequence values. When the system comes back up, Oracle will cache new numbers from where it left off in the sequence, ignoring the so called "lost" sequence values.

Note: To recover the lost sequence values, you can always execute an ALTER SEQUENCE command to reset the counter to the correct value.

Nocache means that none of the sequence values are stored in memory. This option may sacrifice some performance, however, you should not encounter a gap in the assigned sequence values.

Question: How do we set the LASTVALUE value in an Oracle Sequence?

Answer: You can change the LASTVALUE for an Oracle sequence, by executing an ALTER SEQUENCE command.

For example, if the last value used by the Oracle sequence was 100 and you would like to reset the sequence to serve 225 as the next value. You would execute the following commands.

alter sequence seq_name
increment by 124;

select seq_name.nextval from dual;

alter sequence seq_name
increment by 1;

Now, the next value to be served by the sequence will be 225.

Oracle/PLSQL Topics: Transactions

Commit

The syntax for the COMMIT statement is:

COMMIT [WORK] [COMMENT text];

The Commit statement commits all changes for the current session. Once a commit is issued, other users will be able to see your changes.

Rollback
The syntax for the ROLLBACK statement is:

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

The Rollback statement undoes all changes for the current session up to the savepoint specified. If no savepoint is specified, then all changes are undone.

Set Transaction
There are three transaction control functions. These are:

1. SET TRANSACTION READ ONLY;

2. SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

3. SET TRANSACTION USE ROLLBACK SEGMENT name;

Lock Table
The syntax for a Lock table is:

LOCK TABLE tables IN lock_mode MODE [NOWAIT];

Tables is a comma-delimited list of tables.

Lock_mode is one of:

ROW SHARE
ROW EXCLUSIVE
SHARE UPDATE
SHARE
SHARE ROW EXCLUSIVE
EXCLUSIVE.
NoWait specifies that the database should not wait for a lock to be released.

Oracle/PLSQL Topics: Cursors

A cursor is a mechanism by which you can assign a name to a "select statement" and manipulate the information within that SQL statement.

We've categorized cursors into the following topics:

Declare a Cursor
A cursor is a SELECT statement that is defined within the declaration section of your PLSQL code. We'll take a look at three different syntaxes for cursors.

Cursor without parameters (simplest)
The basic syntax for a cursor without parameters is:

CURSOR cursor_name
IS
 SELECT_statement;

For example, you could define a cursor called c1 as below.

CURSOR c1
IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

The result set of this cursor is all course_numbers whose course_name matches the variable called name_in.

Below is a function that uses this cursor.

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

END;

Cursor with parameters
The basic syntax for a cursor with parameters is:

CURSOR cursor_name (parameter_list)
IS
 SELECT_statement;

For example, you could define a cursor called c2 as below.

CURSOR c2 (subject_id_in IN varchar2)
IS
 SELECT course_number
 from courses_tbl
 where subject_id = subject_id_in;

The result set of this cursor is all course_numbers whose subject_id matches the subject_id passed to the cursor via the parameter.

Cursor with return clause
The basic syntax for a cursor with a return clause is:

CURSOR cursor_name
RETURN field%ROWTYPE
IS
 SELECT_statement;

For example, you could define a cursor called c3 as below.

CURSOR c3
RETURN courses_tbl%ROWTYPE
IS
 SELECT *
 from courses_tbl
 where subject = 'Mathematics';

The result set of this cursor is all columns from the course_tbl where the subject is Mathematics.

OPEN Statement
Once you've declared your cursor, the next step is to open the cursor.

The basic syntax to OPEN the cursor is:

OPEN cursor_name;

For example, you could open a cursor called c1 with the following command:

OPEN c1;

Below is a function that demonstrates how to use the OPEN statement:

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

END;

FETCH Statement
The purpose of using a cursor, in most cases, is to retrieve the rows from your cursor so that some type of operation can be performed on the data. After declaring and opening your cursor, the next step is to FETCH the rows from your cursor.

The basic syntax for a FETCH statement is:

FETCH cursor_name INTO <list of variables>;

For example, you could have a cursor defined as:

CURSOR c1
IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

The command that would be used to fetch the data from this cursor is:

FETCH c1 into cnumber;

This would fetch the first course_number into the variable called cnumber;

Below is a function that demonstrates how to use the FETCH statement.

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

END;

CLOSE Statement
The final step of working with cursors is to close the cursor once you have finished using it.

The basic syntax to CLOSE the cursor is:

CLOSE cursor_name;

For example, you could close a cursor called c1 with the following command:

CLOSE c1;

Below is a function that demonstrates how to use the CLOSE statement:

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

END;

Cursor Attributes (%FOUND, %NOTFOUND, etc)
While dealing with cursors, you may need to determine the status of your cursor. The following is a list of the cursor attributes that you can use.

	Attribute
	Explanation

	%ISOPEN
	- Returns TRUE if the cursor is open, FALSE if the cursor is closed.

	%FOUND
	- Returns INVALID_CURSOR if cursor is declared, but not open; or if cursor has been closed.

- Returns NULL if cursor is open, but fetch has not been executed.

- Returns TRUE if a successful fetch has been executed.

- Returns FALSE if no row was returned.

	%NOTFOUND
	- Returns INVALID_CURSOR if cursor is declared, but not open; or if cursor has been closed.

- Return NULL if cursor is open, but fetch has not been executed.

- Returns FALSE if a successful fetch has been executed.

- Returns TRUE if no row was returned.

	%ROWCOUNT
	- Returns INVALID_CURSOR if cursor is declared, but not open; or if cursor has been closed.

- Returns the number of rows fetched.

- The ROWCOUNT attribute doesn't give the real row count until you have iterated through the entire cursor. In other words, you shouldn't rely on this attribute to tell you how many rows are in a cursor after it is opened.

Below is an example of how you might use the %NOTFOUND attribute.

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

END;

SELECT FOR UPDATE Statement
released when the next commit or rollback statement is issued.

The syntax for the Select For Update is:

CURSOR cursor_name
IS
 select_statement
 FOR UPDATE [of column_list] [NOWAIT];

For example, you could use the Select For Update statement as follows:

CURSOR c1
IS
 SELECT course_number, instructor
 from courses_tbl
 FOR UPDATE of instructor;

If you plan on updating or deleting records that have been referenced by a Select For Update statement, you can use the Where Current Of statement.

WHERE CURRENT OF Statement
If you plan on updating or deleting records that have been referenced by a Select For Update statement, you can use the Where Current Of statement.

The syntax for the Where Current Of statement is either:

UPDATE table_name
 SET set_clause
 WHERE CURRENT OF cursor_name;

OR

DELETE FROM table_name
WHERE CURRENT OF cursor_name;

The Where Current Of statement allows you to update or delete the record that was last fetched by the cursor.

Updating using the WHERE CURRENT OF Statement
Here is an example where we are updating records using the Where Current Of Statement:

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in
 FOR UPDATE of instructor;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;

else
 UPDATE courses_tbl
 SET instructor = 'SMITH'
 WHERE CURRENT OF c1;

 COMMIT;

end if;

close c1;

RETURN cnumber;

END;

Deleting using the WHERE CURRENT OF Statement
Here is an example where we are deleting records using the Where Current Of Statement:

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 CURSOR c1
 IS
 SELECT course_number
 from courses_tbl
 where course_name = name_in
 FOR UPDATE of instructor;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;

else
 DELETE FROM courses_tbl
 WHERE CURRENT OF c1;

 COMMIT;

end if;

close c1;

RETURN cnumber;

END;

Cursor Examples:

Procedure that outputs a dynamic PLSQL cursor
Question: In Oracle, I have a table called "wine" and a stored procedure that outputs a cursor based on the "wine" table.

I've created an HTML Form where the user can enter any combination of three values to retrieve results from the "wine" table. My problem is that I need a general "select" statement that will work no matter what value(s), the user enters.

Example:

parameter_1= "Chianti"
parameter_2= "10"
parameter_3= wasn't entered by the user but I have to use in the select statement. And this is my problem. How to initialize this parameter to get all rows for column3?

SELECT * FROM wine
WHERE column1 = parameter_1
AND column2 = parameter_2
AND column3 = parameter_3;.

The output of my stored procedure must be a cursor.

Answer: To solve your problem, you will need to output a dynamic PLSQL cursor in Oracle.

Let's take a look at how we can do this. We've divided this process into 3 steps.

Step 1 - Table Definition
First, we need a table created in Oracle called "wine". Below is the create statement for the wine table.

create table wine
(col1 varchar2(40),
 col2 varchar2(40),
 col3 varchar2(40)
);

We've made this table definition very simple, for demonstration purposes.

Step 2 - Create package
Next, we've created a package called "winepkg" that contains our cursor definition. This needs to be done so that we can use a cursor as an output parameter in our stored procedure.

create or replace PACKAGE winepkg
IS
 /* Define the REF CURSOR type. */
 TYPE wine_type IS REF CURSOR RETURN wine%ROWTYPE;
END winepkg;

This cursor will accept all fields from the "wine" table.

Step 3 - Create stored procedure
Our final step is to create a stored procedure to return the cursor. It accepts three parameters (entered by the user on the HTML Form) and returns a cursor (c1) of type "wine_type" which was declared in Step 2.

The procedure will determine the appropriate cursor to return, based on the value(s) that have been entered by the user (input parameters).

create or replace procedure find_wine2
 (col1_in in varchar2,
 col2_in in varchar2,
 col3_in in varchar2,
 c1 out winepkg.wine_type)
as

BEGIN

 /* all columns were entered */
 IF (length(col1_in) > 0) and (length(col2_in) > 0) and (length(col3_in) > 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col1 = col1_in
 and wine.col2 = col2_in
 and wine.col3 = col3_in;

 /* col1 and col2 were entered */
 ELSIF (length(col1_in) > 0) and (length(col2_in) > 0) and (length(col3_in) = 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col1 = col1_in
 and wine.col2 = col2_in;

 /* col1 and col3 were entered */
 ELSIF (length(col1_in) > 0) and (length(col2_in) = 0) and (length(col3_in) > 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col1 = col1_in
 and wine.col3 = col3_in;

 /* col2 and col3 where entered */
 ELSIF (length(col1_in) = 0) and (length(col2_in) > 0) and (length(col3_in) > 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col2 = col2_in
 and wine.col3 = col3_in;

 /* col1 was entered */
 ELSIF (length(col1_in) > 0) and (length(col2_in) = 0) and (length(col3_in) = 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col1 = col1_in;

 /* col2 was entered */
 ELSIF (length(col1_in) = 0) and (length(col2_in) > 0) and (length(col3_in) = 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col2 = col2_in;

 /* col3 was entered */
 ELSIF (length(col1_in) = 0) and (length(col2_in) = 0) and (length(col3_in) > 0)
 THEN
 OPEN c1 FOR
 select *
 from wine
 where wine.col3 = col3_in;

 END IF;

END find_wine2;

Cursor within a cursor
Question: In PSQL, I want to declare a cursor within cursor. The second cursor should use a value from the first cursor in the "where clause". How can I do this?

Answer: Below is an example of how to declare a cursor within a cursor.

In this example, we have a cursor called get_tables that retrieves the owner and table_name values. These values are then used in a second cursor called get_columns.

create or replace procedure MULTIPLE_CURSORS_PROC is
 v_owner varchar2(40);
 v_table_name varchar2(40);
 v_column_name varchar2(100);

 /* First cursor */
 cursor get_tables is
 select distinct tbl.owner, tbl.table_name
 from all_tables tbl
 where tbl.owner = 'SYSTEM';

 /* Second cursor */
 cursor get_columns is
 select distinct col.column_name
 from all_tab_columns col
 where col.owner = v_owner
 and col.table_name = v_table_name;

 begin

 -- Open first cursor
 open get_tables;
 loop
 fetch get_tables into v_owner, v_table_name;

 open get_columns;
 loop
 fetch get_columns into v_column_name;

 end loop;
 close get_columns;

 end loop;
 close get_tables;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
end MULTIPLE_CURSORS_PROC;

The trick to declaring a cursor within a cursor is that you need to continue to open and close the second cursor each time a new record is retrieved from the first cursor. That way, the second cursor will use the new variable values from the first cursor.

Cursor with variable in an "IN CLAUSE"
Question: I'm trying to use a variable in an IN CLAUSE.

Assumptions & declarations:

1. Ref_cursor is of type REF CURSOR declared in Package

2. I will to pass a comma separated Numbers as a string

3. This should be used in the query in the IN Clause

4. Execute the Query and Return the Output as REF Cursor

Something similar to the following:

Create or Replace Function func_name (inNumbers in Varchar2)
 Return PackageName.ref_cursor
As
 out_cursor PackageName.Ref_cursor;

Begin
 Open out_cursor
 For Select * from Table_name
 where column_name in (inNumbers);

 Return out_cursor;
End;

I seem to be getting an error when I try the code above. How can I use a variable in an IN CLAUSE?

Answer: Unfortunately, there is no easy way to use a variable in an IN CLAUSE if the variable contains a list of items. We can, however, suggest two alternative options:

Option #1
Instead of creating a string variable that contains a list of numbers, you could try storing each value in a separate variable. For example:

Create or Replace Function func_name
 Return PackageName.ref_cursor
As
 out_cursor PackageName.Ref_cursor;
 v1 varchar(2);
 v2 varchar(2);
 v3 varchar(2);

Begin

 v1 := '1';
 v2 := '2';
 v3 := '3';

 Open out_cursor
 For Select * from Table_name
 where column_name in (v1, v2, v3);

 Return out_cursor;

End;

Option #2
You could try storing your values in a table. Then use a sub-select to retrieve the values.
For example:

Create or Replace Function func_name
 Return PackageName.ref_cursor
As
 out_cursor PackageName.Ref_cursor;

Begin

 Open out_cursor
 For Select * from Table_name
 where column_name in (select values from list_table);

 Return out_cursor;

End;

In this example, we've stored our list in a table called list_table.

Oracle/PLSQL Topics: Built-In Functions (By Category)

View an Alphabetical Listing of Functions
	Character / String Functions:

	
	Ascii
	Convert
	Lower
	Soundex

	
	AsciiStr
	Decompose
	Lpad
	Substr

	
	Chr
	Dump
	Ltrim
	Translate

	
	Compose
	Initcap
	Replace
	Trim

	
	Concat
	Instr
	Rpad
	Upper

	
	Concat with ||
	Length
	Rtrim
	VSize

	Conversion Functions:

	
	Bin_To_Num
	NumToDSInterval
	To_Date
	To_Number

	
	C

 HYPERLINK "http://www.techonthenet.com/oracle/functions/cast.php" ast
	NumToYMInterval
	To_DSInterval
	To_Single_Byte

	
	CharToRowid
	RawToHex

 INCLUDEPICTURE "http://www.techonthenet.com/images/new.gif" * MERGEFORMATINET

	To_Lob
	To_Timestamp

	
	From_Tz
	To_Char
	To_Multi_Byte
	To_Timestamp_Tz

	
	HexToRaw
	To_Clob
	To_NClob
	To_YMInterval

	Advanced Functions:

	
	BFilename
	Group_ID
	NULLIF

 INCLUDEPICTURE "http://www.techonthenet.com/images/new.gif" * MERGEFORMATINET

	User

	
	Cardinality
	Lag

 INCLUDEPICTURE "http://www.techonthenet.com/images/new.gif" * MERGEFORMATINET

	NVL
	UserEnv

	
	Case Statement
	Lead

 INCLUDEPICTURE "http://www.techonthenet.com/images/new.gif" * MERGEFORMATINET

	NVL2
	

	
	Coalesce
	LNNVL

 INCLUDEPICTURE "http://www.techonthenet.com/images/new.gif" * MERGEFORMATINET

	Sys_Context
	

	
	Decode
	NANVL
	Uid
	

	Mathematical Functions:

	
	Abs
	Covar_pop
	Max
	Sqrt

	
	Acos
	Covar_samp
	Median
	StdDev

	
	Asin
	Count
	Min
	Sum

	
	Atan
	Cume_Dist
	Mod
	Tan

	
	Atan2
	Dense_Rank
	Power
	Tanh

	
	Avg
	Exp
	Rank
	Trunc (numbers)

	
	Bin_To_Num
	Extract
	Remainder
	Trunc (dates)

	
	BitAnd
	Floor
	Round (numbers)
	Var_pop

	
	Ceil
	Greatest
	Round (dates)
	Var_samp

	
	Corr
	Least
	Sign
	Variance

	
	Cos
	Ln
	Sin
	

	
	Cosh
	Log
	Sinh
	

	Date Functions:

	
	Add_Months
	Last_Day
	Round
	To_Date

	
	Current_Date
	LocalTimestamp
	SessionTimeZone
	Trunc

	
	Current_Timestamp
	Months_Between
	Sysdate
	Tz_Offset

	
	DbTimeZone
	New_Time
	SysTimestamp
	

	
	From_Tz
	Next_Day
	To_Char
	

	Error Functions:

	
	SQLCODE
	
	
	

	
	SQLERRM
	
	
	

	Miscellaneous Functions:

	
	Retrieve user ID from the current Oracle session

	
	Retrieve the session ID for the user logged in

Oracle/PLSQL: Primary Keys

What is a primary key?
A primary key is a single field or combination of fields that uniquely defines a record. None of the fields that are part of the primary key can contain a null value. A table can have only one primary key.

Note:

In Oracle, a primary key can not contain more than 32 columns.

A primary key can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

Using a CREATE TABLE statement
The syntax for creating a primary key using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT constraint_name PRIMARY KEY (column1, column2, . column_n)
);

For example:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field.

We could also create a primary key with more than one field as in the example below:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

Using an ALTER TABLE statement
The syntax for creating a primary key in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name PRIMARY KEY (column1, column2, ... column_n);

For example:

ALTER TABLE supplier
add CONSTRAINT supplier_pk PRIMARY KEY (supplier_id);

In this example, we've created a primary key on the existing supplier table called supplier_pk. It consists of the field called supplier_id.

We could also create a primary key with more than one field as in the example below:

ALTER TABLE supplier
add CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name);

Drop a Primary Key
The syntax for dropping a primary key is:

ALTER TABLE table_name
drop CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
drop CONSTRAINT supplier_pk;

In this example, we're dropping a primary key on the supplier table called supplier_pk.

Disable a Primary Key
The syntax for disabling a primary key is:

ALTER TABLE table_name
disable CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
disable CONSTRAINT supplier_pk;

In this example, we're disabling a primary key on the supplier table called supplier_pk.

Enable a Primary Key
The syntax for enabling a primary key is:

ALTER TABLE table_name
enable CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
enable CONSTRAINT supplier_pk;

In this example, we're enabling a primary key on the supplier table called supplier_pk.

Oracle/PLSQL Topics: Foreign Keys

Creating Foreign Keys:

Foreign Keys
What is a foreign key?
A foreign key means that values in one table must also appear in another table.

The referenced table is called the parent table while the table with the foreign key is called the child table. The foreign key in the child table will generally reference a primary key in the parent table.

A foreign key can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

Using a CREATE TABLE statement
The syntax for creating a foreign key using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT fk_column
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n)
);

For example:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

We could also create a foreign key with more than one field as in the example below:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	CONSTRAINT fk_supplier_comp

	
	 FOREIGN KEY (supplier_id, supplier_name)

	
	 REFERENCES supplier(supplier_id, supplier_name)

);

In this example, our foreign key called fk_foreign_comp references the supplier table based on two fields - the supplier_id and supplier_name fields.

Using an ALTER TABLE statement
The syntax for creating a foreign key in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n);

For example:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id)
 REFERENCES supplier(supplier_id);

In this example, we've created a foreign key called fk_supplier that references the supplier table based on the supplier_id field.

We could also create a foreign key with more than one field as in the example below:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id, supplier_name)
 REFERENCES supplier(supplier_id, supplier_name);

Foreign Keys with cascade delete
What is a foreign key?
A foreign key means that values in one table must also appear in another table.

The referenced table is called the parent table while the table with the foreign key is called the child table. The foreign key in the child table will generally reference a primary key in the parent table.

A foreign key with a cascade delete means that if a record in the parent table is deleted, then the corresponding records in the child table with automatically be deleted. This is called a cascade delete.

A foreign key with a cascade delete can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

Using a CREATE TABLE statement
The syntax for creating a foreign key using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT fk_column
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n)
 ON DELETE CASCADE
);

For example:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

	
	 ON DELETE CASCADE

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

Because of the cascade delete, when a record in the supplier table is deleted, all records in the products table will also be deleted that have the same supplier_id value.

We could also create a foreign key (with a cascade delete) with more than one field as in the example below:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	CONSTRAINT fk_supplier_comp

	
	 FOREIGN KEY (supplier_id, supplier_name)

	
	 REFERENCES supplier(supplier_id, supplier_name)

	
	 ON DELETE CASCADE

);

In this example, our foreign key called fk_foreign_comp references the supplier table based on two fields - the supplier_id and supplier_name fields.

The cascade delete on the foreign key called fk_foreign_comp causes all corresponding records in the products table to be cascade deleted when a record in the supplier table is deleted, based on supplier_id and supplier_name.

Using an ALTER TABLE statement
The syntax for creating a foreign key in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n)
 ON DELETE CASCADE;

For example:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id)
 REFERENCES supplier(supplier_id)
 ON DELETE CASCADE;

In this example, we've created a foreign key (with a cascade delete) called fk_supplier that references the supplier table based on the supplier_id field.

We could also create a foreign key (with a cascade delete) with more than one field as in the example below:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id, supplier_name)
 REFERENCES supplier(supplier_id, supplier_name)
 ON DELETE CASCADE;

Foreign Keys with "set null on delete"
What is a foreign key?
A foreign key means that values in one table must also appear in another table.

The referenced table is called the parent table while the table with the foreign key is called the child table. The foreign key in the child table will generally reference a primary key in the parent table.

A foreign key with a "set null on delete" means that if a record in the parent table is deleted, then the corresponding records in the child table will have the foreign key fields set to null. The records in the child table will not be deleted.

A foreign key with a "set null on delete" can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

Using a CREATE TABLE statement
The syntax for creating a foreign key using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT fk_column
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n)
 ON DELETE SET NULL
);

For example:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10),
	

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

	
	 ON DELETE SET NULL

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

Because of the set null on delete, when a record in the supplier table is deleted, all corresponding records in the products table will have the supplier_id values set to null.

We could also create a foreign key "set null on delete" with more than one field as in the example below:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10),
	

	
	supplier_name
	varchar2(50),
	

	
	CONSTRAINT fk_supplier_comp

	
	 FOREIGN KEY (supplier_id, supplier_name)

	
	 REFERENCES supplier(supplier_id, supplier_name)

	
	 ON DELETE SET NULL

);

In this example, our foreign key called fk_foreign_comp references the supplier table based on two fields - the supplier_id and supplier_name fields.

The delete on the foreign key called fk_foreign_comp causes all corresponding records in the products table to have the supplier_id and supplier_name fields set to null when a record in the supplier table is deleted, based on supplier_id and supplier_name.

Using an ALTER TABLE statement
The syntax for creating a foreign key in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name
 FOREIGN KEY (column1, column2, ... column_n)
 REFERENCES parent_table (column1, column2, ... column_n)
 ON DELETE SET NULL;

For example:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id)
 REFERENCES supplier(supplier_id)
 ON DELETE SET NULL;

In this example, we've created a foreign key "with a set null on delete" called fk_supplier that references the supplier table based on the supplier_id field.

We could also create a foreign key "with a set null on delete" with more than one field as in the example below:

ALTER TABLE products
add CONSTRAINT fk_supplier
 FOREIGN KEY (supplier_id, supplier_name)
 REFERENCES supplier(supplier_id, supplier_name)
 ON DELETE SET NULL;

Dropping Foreign Keys:

Drop a foreign key
The syntax for dropping a foreign key is:

ALTER TABLE table_name
drop CONSTRAINT constraint_name;

For example:

If you had created a foreign key as follows:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

If we then wanted to drop the foreign key called fk_supplier, we could execute the following command:

ALTER TABLE products
drop CONSTRAINT fk_supplier;

Disable/Enable Foreign Keys:

Disable a foreign key
The syntax for disabling a foreign key is:

ALTER TABLE table_name
disable CONSTRAINT constraint_name;

For example:

If you had created a foreign key as follows:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

If we then wanted to disable the foreign key called fk_supplier, we could execute the following command:

ALTER TABLE products
disable CONSTRAINT fk_supplier;

Enable a foreign key
The syntax for enabling a foreign key is:

ALTER TABLE table_name
enable CONSTRAINT constraint_name;

For example:

If you had created a foreign key as follows:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

	CREATE TABLE products

	(
	product_id
	numeric(10)
	not null,

	
	supplier_id
	numeric(10)
	not null,

	
	CONSTRAINT fk_supplier

	
	 FOREIGN KEY (supplier_id)

	
	 REFERENCES supplier(supplier_id)

);

In this example, we've created a primary key on the supplier table called supplier_pk. It consists of only one field - the supplier_id field. Then we've created a foreign key called fk_supplier on the products table that references the supplier table based on the supplier_id field.

If the foreign key had been disabled and we wanted to enable it, we could execute the following command:

ALTER TABLE products
enable CONSTRAINT fk_supplier;

What is a unique constraint?
A unique constraint is a single field or combination of fields that uniquely defines a record. Some of the fields can contain null values as long as the combination of values is unique.

Note:

In Oracle, a unique constraint can not contain more than 32 columns.

A unique constraint can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

What is the difference between a unique constraint and a primary key?
	Primary Key
	Unique Constraint

	None of the fields that are part of the primary key can contain a null value.
	Some of the fields that are part of the unique constraint can contain null values as long as the combination of values is unique.

Oracle does not permit you to create both a primary key and unique constraint with the same columns.

Using a CREATE TABLE statement
The syntax for creating a unique constraint using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT constraint_name UNIQUE (column1, column2, . column_n)
);

For example:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_unique UNIQUE (supplier_id)

);

In this example, we've created a unique constraint on the supplier table called supplier_unique. It consists of only one field - the supplier_id field.

We could also create a unique constraint with more than one field as in the example below:

	CREATE TABLE supplier

	(
	supplier_id
	numeric(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	contact_name
	varchar2(50),
	

	
	CONSTRAINT supplier_unique UNIQUE (supplier_id, supplier_name)

);

Using an ALTER TABLE statement
The syntax for creating a unique constraint in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name UNIQUE (column1, column2, ... column_n);

For example:

ALTER TABLE supplier
add CONSTRAINT supplier_unique UNIQUE (supplier_id);

In this example, we've created a unique constraint on the existing supplier table called supplier_unique. It consists of the field called supplier_id.

We could also create a unique constraint with more than one field as in the example below:

ALTER TABLE supplier
add CONSTRAINT supplier_unique UNIQUE (supplier_id, supplier_name);

Drop a Unique Constraint
The syntax for dropping a unique constraint is:

ALTER TABLE table_name
drop CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
drop CONSTRAINT supplier_unique;

In this example, we're dropping a unique constraint on the supplier table called supplier_unique.

Disable a Unique Constraint
The syntax for disabling a unique constraint is:

ALTER TABLE table_name
disable CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
disable CONSTRAINT supplier_unique;

In this example, we're disabling a unique constraint on the supplier table called supplier_unique.

Enable a Unique Constraint
The syntax for enabling a unique constraint is:

ALTER TABLE table_name
enable CONSTRAINT constraint_name;

For example:

ALTER TABLE supplier
enable CONSTRAINT supplier_unique;

In this example, we're enabling a unique constraint on the supplier table called supplier_unique.

Oracle/PLSQL: Check Constraints

What is a check constraint?
A check constraint allows you to specify a condition on each row in a table.

Note:

· A check constraint can NOT be defined on a VIEW.

· The check constraint defined on a table must refer to only columns in that table. It can not refer to columns in other tables.

· A check constraint can NOT include a SUBQUERY.

A check constraint can be defined in either a CREATE TABLE statement or an ALTER TABLE statement.

Using a CREATE TABLE statement
The syntax for creating a check constraint using a CREATE TABLE statement is:

CREATE TABLE table_name
(column1 datatype null/not null,
column2 datatype null/not null,
...
CONSTRAINT constraint_name CHECK (column_name condition) [DISABLE]
);

The DISABLE keyword is optional. If you create a check constraint using the DISABLE keyword, the constraint will be created, but the condition will not be enforced.

For example:

	CREATE TABLE suppliers

	(
	supplier_id
	numeric(4),
	

	
	supplier_name
	varchar2(50),
	

	
	CONSTRAINT check_supplier_id

	
	CHECK (supplier_id BETWEEN 100 and 9999)

);

In this first example, we've created a check constraint on the suppliers table called check_supplier_id. This constraint ensures that the supplier_id field contains values between 100 and 9999.

	CREATE TABLE suppliers

	(
	supplier_id
	numeric(4),
	

	
	supplier_name
	varchar2(50),
	

	
	CONSTRAINT check_supplier_name

	
	CHECK (supplier_name = upper(supplier_name))

);

In this second example, we've created a check constraint called check_supplier_name. This constraint ensures that the supplier_name column always contains uppercase characters.

Using an ALTER TABLE statement
The syntax for creating a check constraint in an ALTER TABLE statement is:

ALTER TABLE table_name
add CONSTRAINT constraint_name CHECK (column_name condition) [DISABLE];

The DISABLE keyword is optional. If you create a check constraint using the DISABLE keyword, the constraint will be created, but the condition will not be enforced.

For example:

ALTER TABLE suppliers
add CONSTRAINT check_supplier_name
 CHECK (supplier_name IN ('IBM', 'Microsoft', 'NVIDIA'));

In this example, we've created a check constraint on the existing suppliers table called check_supplier_name. It ensures that the supplier_name field only contains the following values: IBM, Microsoft, or NVIDIA.

Drop a Check Constraint
The syntax for dropping a check constraint is:

ALTER TABLE table_name
drop CONSTRAINT constraint_name;

For example:

ALTER TABLE suppliers
drop CONSTRAINT check_supplier_id;

In this example, we're dropping a check constraint on the suppliers table called check_supplier_id.

Enable a Check Constraint
The syntax for enabling a check constraint is:

ALTER TABLE table_name
enable CONSTRAINT constraint_name;

For example:

ALTER TABLE suppliers
enable CONSTRAINT check_supplier_id;

In this example, we're enabling a check constraint on the suppliers table called check_supplier_id.

Disable a Check Constraint
The syntax for disabling a check constraint is:

ALTER TABLE table_name
disable CONSTRAINT constraint_name;

For example:

ALTER TABLE suppliers
disable CONSTRAINT check_supplier_id;

In this example, we're disabling a check constraint on the suppliers table called check_supplier_id.

Oracle/PLSQL: Indexes

What is an Index?
An index is a performance-tuning method of allowing faster retrieval of records. An index creates an entry for each value that appears in the indexed columns. By default, Oracle creates B-tree indexes.

Create an Index
The syntax for creating a index is:

CREATE [UNIQUE] INDEX index_name
 ON table_name (column1, column2, . column_n)
 [COMPUTE STATISTICS];

UNIQUE indicates that the combination of values in the indexed columns must be unique.

COMPUTE STATISTICS tells Oracle to collect statistics during the creation of the index. The statistics are then used by the optimizer to choose a "plan of execution" when SQL statements are executed.

For example:

CREATE INDEX supplier_idx
 ON supplier (supplier_name);

In this example, we've created an index on the supplier table called supplier_idx. It consists of only one field - the supplier_name field.

We could also create an index with more than one field as in the example below:

CREATE INDEX supplier_idx
 ON supplier (supplier_name, city);

We could also choose to collect statistics upon creation of the index as follows:

CREATE INDEX supplier_idx
 ON supplier (supplier_name, city)
 COMPUTE STATISTICS;

Create a Function-Based Index
In Oracle, you are not restricted to creating indexes on only columns. You can create function-based indexes.

The syntax for creating a function-based index is:

CREATE [UNIQUE] INDEX index_name
 ON table_name (function1, function2, . function_n)
 [COMPUTE STATISTICS];

For example:

CREATE INDEX supplier_idx
 ON supplier (UPPER(supplier_name));

In this example, we've created an index based on the uppercase evaluation of the supplier_name field.

However, to be sure that the Oracle optimizer uses this index when executing your SQL statements, be sure that UPPER(supplier_name) does not evaluate to a NULL value. To ensure this, add UPPER(supplier_name) IS NOT NULL to your WHERE clause as follows:

SELECT supplier_id, supplier_name, UPPER(supplier_name)
FROM supplier
WHERE UPPER(supplier_name) IS NOT NULL
ORDER BY UPPER(supplier_name);

Rename an Index
The syntax for renaming an index is:

ALTER INDEX index_name
 RENAME TO new_index_name;

For example:

ALTER INDEX supplier_idx
 RENAME TO supplier_index_name;

In this example, we're renaming the index called supplier_idx to supplier_index_name.

Collect Statistics on an Index
If you forgot to collect statistics on the index when you first created it or you want to update the statistics, you can always use the ALTER INDEX command to collect statistics at a later date.

The syntax for collecting statistics on an index is:

ALTER INDEX index_name
 REBUILD COMPUTE STATISTICS;

For example:

ALTER INDEX supplier_idx
 REBUILD COMPUTE STATISTICS;

In this example, we're collecting statistics for the index called supplier_idx.

Drop an Index
The syntax for dropping an index is:

DROP INDEX index_name;

For example:

DROP INDEX supplier_idx;

In this example, we're dropping an index called supplier_idx.

Oracle/PLSQL: Creating Functions

In Oracle, you can create your own functions.

The syntax for a function is:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter [,parameter])]
 RETURN return_datatype
IS | AS
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [function_name];

When you create a procedure or function, you may define parameters. There are three types of parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or function. The value of the parameter can not be overwritten by the procedure or function.

2. OUT - The parameter can not be referenced by the procedure or function, but the value of the parameter can be overwritten by the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or function and the value of the parameter can be overwritten by the procedure or function.

The following is a simple example of a function:

CREATE OR REPLACE Function FindCourse
 (name_in IN varchar2)
 RETURN number
IS
 cnumber number;

 cursor c1 is
 select course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

close c1;

RETURN cnumber;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

This function is called FindCourse. It has one parameter called name_in and it returns a number. The function will return the course number if it finds a match based on course name. Otherwise, it returns a 99999.

You could then reference your new function in an SQL statement as follows:

select course_name, FindCourse(course_name) as course_id
from courses
where subject = 'Mathematics';

Oracle/PLSQL: Creating Procedures

In Oracle, you can create your own procedures.

The syntax for a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter [,parameter])]
IS
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [procedure_name];

When you create a procedure or function, you may define parameters. There are three types of parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or function. The value of the parameter can not be overwritten by the procedure or function.

2. OUT - The parameter can not be referenced by the procedure or function, but the value of the parameter can be overwritten by the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or function and the value of the parameter can be overwritten by the procedure or function.

The following is a simple example of a procedure:

CREATE OR REPLACE Procedure UpdateCourse
 (name_in IN varchar2)
IS
 cnumber number;

 cursor c1 is
 select course_number
 from courses_tbl
 where course_name = name_in;

BEGIN

open c1;
fetch c1 into cnumber;

if c1%notfound then
 cnumber := 9999;
end if;

insert into student_courses
(course_name,
 course_number)
values (name_in,
 cnumber);

commit;

close c1;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

This procedure is called UpdateCourse. It has one parameter called name_in. The procedure will lookup the course_number based on course name. If it does not find a match, it defaults the course number to 99999. It then inserts a new record into the student_courses table.

Oracle/PLSQL Topics: Creating Triggers

Insert Triggers:

BEFORE INSERT Trigger
A BEFORE INSERT Trigger means that Oracle will fire this trigger before the INSERT operation is executed.

The syntax for an BEFORE INSERT Trigger is:

CREATE or REPLACE TRIGGER trigger_name
BEFORE INSERT
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create a BEFORE trigger on a view.

· You can update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2),

	
	create_date
	date,

	
	created_by
	varchar2(10)

);

We could then create a BEFORE INSERT trigger as follows:

CREATE OR REPLACE TRIGGER orders_before_insert
BEFORE INSERT
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN

 -- Find username of person performing INSERT into table
 SELECT user INTO v_username
 FROM dual;

 -- Update create_date field to current system date
 :new.create_date := sysdate;

 -- Update created_by field to the username of the person performing the INSERT
 :new.created_by := v_username;

END;

AFTER INSERT Trigger
An AFTER INSERT Trigger means that Oracle will fire this trigger after the INSERT operation is executed.

The syntax for an AFTER INSERT Trigger is:

CREATE or REPLACE TRIGGER trigger_name
AFTER INSERT
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create an AFTER trigger on a view.

· You can not update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2)

);

We could then create an AFTER INSERT trigger as follows:

CREATE OR REPLACE TRIGGER orders_after_insert
AFTER INSERT
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN
 -- Find username of person performing the INSERT into the table
 SELECT user INTO v_username
 FROM dual;

 -- Insert record into audit table
 INSERT INTO orders_audit
 (order_id,
 quantity,
 cost_per_item,
 total_cost,
 username)
 VALUES
 (:new.order_id,
 :new.quantity,
 :new.cost_per_item,
 :new.total_cost,
 v_username);

END;

Update Triggers:

BEFORE UPDATE Trigger
A BEFORE UPDATE Trigger means that Oracle will fire this trigger before the UPDATE operation is executed.

The syntax for an BEFORE UPDATE Trigger is:

CREATE or REPLACE TRIGGER trigger_name
BEFORE UPDATE
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create a BEFORE trigger on a view.

· You can update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2),

	
	updated_date
	date,

	
	updated_by
	varchar2(10)

);

We could then create a BEFORE UPDATE trigger as follows:

CREATE OR REPLACE TRIGGER orders_before_update
BEFORE UPDATE
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN

 -- Find username of person performing UPDATE on the table
 SELECT user INTO v_username
 FROM dual;

 -- Update updated_date field to current system date
 :new.updated_date := sysdate;

 -- Update updated_by field to the username of the person performing the UPDATE
 :new.updated_by := v_username;

END;

AFTER UPDATE Trigger
An AFTER UPDATE Trigger means that Oracle will fire this trigger after the UPDATE operation is executed.

The syntax for an AFTER UPDATE Trigger is:

CREATE or REPLACE TRIGGER trigger_name
AFTER UPDATE
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create an AFTER trigger on a view.

· You can not update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2)

);

We could then create an AFTER UPDATE trigger as follows:

CREATE OR REPLACE TRIGGER orders_after_update
AFTER UPDATE
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN

 -- Find username of person performing UPDATE into table
 SELECT user INTO v_username
 FROM dual;

 -- Insert record into audit table
 INSERT INTO orders_audit
 (order_id,
 quantity_before,
 quantity_after,
 username)
 VALUES
 (:new.order_id,
 :old.quantity,
 :new.quantity,
 v_username);

END;

Delete Triggers:

BEFORE DELETE Trigger
A BEFORE DELETE Trigger means that Oracle will fire this trigger before the DELETE operation is executed.

The syntax for an BEFORE DELETE Trigger is:

CREATE or REPLACE TRIGGER trigger_name
BEFORE DELETE
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create a BEFORE trigger on a view.

· You can update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2)

);

We could then create a BEFORE DELETE trigger as follows:

CREATE OR REPLACE TRIGGER orders_before_delete
BEFORE DELETE
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN

 -- Find username of person performing the DELETE on the table
 SELECT user INTO v_username
 FROM dual;

 -- Insert record into audit table
 INSERT INTO orders_audit
 (order_id,
 quantity,
 cost_per_item,
 total_cost,
 delete_date,
 deleted_by)
 VALUES
 (:old.order_id,
 :old.quantity,
 :old.cost_per_item,
 :old.total_cost,
 sysdate,
 v_username);

END;

AFTER DELETE Trigger
An AFTER DELETE Trigger means that Oracle will fire this trigger after the DELETE operation is executed.

The syntax for an AFTER DELETE Trigger is:

CREATE or REPLACE TRIGGER trigger_name
AFTER DELETE
 ON table_name
 [FOR EACH ROW]
DECLARE
 -- variable declarations
BEGIN
 -- trigger code
EXCEPTION
 WHEN ...
 -- exception handling
END;

trigger_name is the name of the trigger to create.

Restrictions:

· You can not create an AFTER trigger on a view.

· You can not update the :NEW values.

· You can not update the :OLD values.

For example:

If you had a table created as follows:

	CREATE TABLE orders

	(
	order_id
	number(5),

	
	quantity
	number(4),

	
	cost_per_item
	number(6,2),

	
	total_cost
	number(8,2)

);

We could then create an DELETE UPDATE trigger as follows:

CREATE OR REPLACE TRIGGER orders_after_delete
AFTER DELETE
 ON orders
 FOR EACH ROW

DECLARE
 v_username varchar2(10);

BEGIN

 -- Find username of person performing the DELETE on the table
 SELECT user INTO v_username
 FROM dual;

 -- Insert record into audit table
 INSERT INTO orders_audit
 (order_id,
 quantity,
 cost_per_item,
 total_cost,
 delete_date,
 deleted_by)
 VALUES
 (:old.order_id,
 :old.quantity,
 :old.cost_per_item,
 :old.total_cost,
 sysdate,
 v_username);

END;

Drop Triggers:

Drop a Trigger
The syntax for a dropping a Trigger is:

DROP TRIGGER trigger_name;

For example:

If you had a trigger called orders_before_insert, you could drop it with the following command:

DROP TRIGGER orders_before_insert;

Disable/Enable Triggers:

Disable a Trigger
The syntax for a disabling a Trigger is:

ALTER TRIGGER trigger_name DISABLE;

For example:

If you had a trigger called orders_before_insert, you could disable it with the following command:

ALTER TRIGGER orders_before_insert DISABLE;

Disable all Triggers on a table
The syntax for a disabling all Triggers on a table is:

ALTER TABLE table_name DISABLE ALL TRIGGERS;

For example:

If you had a table called orders and you wanted to disable all triggers on this table, you could execute the following command:

ALTER TABLE orders DISABLE ALL TRIGGERS;

Enable a Trigger
The syntax for a enabling a Trigger is:

ALTER TRIGGER trigger_name ENABLE;

For example:

If you had a trigger called orders_before_insert, you could enable it with the following command:

ALTER TRIGGER orders_before_insert ENABLE;

Enable all Triggers on a table
The syntax for a enabling all Triggers on a table is:

ALTER TABLE table_name ENABLE ALL TRIGGERS;

For example:

If you had a table called orders and you wanted to enable all triggers on this table, you could execute the following command:

ALTER TABLE orders ENABLE ALL TRIGGERS;

Oracle/PLSQL Topics: Exception Handling

We've categorized exception handling into the following topics:

Named System Exceptions
What is a named system exception?
Named system exceptions are exceptions that have been given names by PL/SQL. They are named in the STANDARD package in PL/SQL and do not need to be defined by the programmer.

Oracle has a standard set of exceptions already named as follows:

	Oracle Exception Name
	Oracle Error
	Explanation

	DUP_VAL_ON_INDEX
	ORA-00001
	You tried to execute an INSERT or UPDATE statement that has created a duplicate value in a field restricted by a unique index.

	TIMEOUT_ON_RESOURCE
	ORA-00051
	You were waiting for a resource and you timed out.

	TRANSACTION_BACKED_OUT
	ORA-00061
	The remote portion of a transaction has rolled back.

	INVALID_CURSOR
	ORA-01001
	You tried to reference a cursor that does not yet exist. This may have happened because you've executed a FETCH cursor or CLOSE cursor before OPENing the cursor.

	NOT_LOGGED_ON
	ORA-01012
	You tried to execute a call to Oracle before logging in.

	LOGIN_DENIED
	ORA-01017
	You tried to log into Oracle with an invalid username/password combination.

	NO_DATA_FOUND
	ORA-01403
	You tried one of the following:

1. You executed a SELECT INTO statement and no rows were returned.

2. You referenced an uninitialized row in a table.

3. You read past the end of file with the UTL_FILE package.

	TOO_MANY_ROWS
	ORA-01422
	You tried to execute a SELECT INTO statement and more than one row was returned.

	ZERO_DIVIDE
	ORA-01476
	You tried to divide a number by zero.

	INVALID_NUMBER
	ORA-01722
	You tried to execute an SQL statement that tried to convert a string to a number, but it was unsuccessful.

	STORAGE_ERROR
	ORA-06500
	You ran out of memory or memory was corrupted.

	PROGRAM_ERROR
	ORA-06501
	This is a generic "Contact Oracle support" message because an internal problem was encountered.

	VALUE_ERROR
	ORA-06502
	You tried to perform an operation and there was a error on a conversion, truncation, or invalid constraining of numeric or character data.

	CURSOR_ALREADY_OPEN
	ORA-06511
	You tried to open a cursor that is already open.

The syntax for the Named System Exception in a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter [,parameter])]
IS
 [declaration_section]
BEGIN
 executable_section

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [procedure_name];

The syntax for the Named System Exception in a function is:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter [,parameter])]
 RETURN return_datatype
IS | AS
 [declaration_section]
BEGIN
 executable_section

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [function_name];

Here is an example of a procedure that uses a Named System Exception:

CREATE OR REPLACE PROCEDURE add_new_supplier
 (supplier_id_in IN NUMBER, supplier_name_in IN VARCHAR2)
IS

BEGIN
 INSERT INTO suppliers (supplier_id, supplier_name)
 VALUES (supplier_id_in, supplier_name_in);

EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 raise_application_error (-20001,'You have tried to insert a duplicate supplier_id.');

 WHEN OTHERS THEN
 raise_application_error (-20002,'An error has occurred inserting a supplier.');

END;

In this example, we are trapping the Named System Exception called DUP_VAL_ON_INDEX. We are also using the WHEN OTHERS clause to trap all remaining exceptions.

Named Programmer-Defined Exceptions
What is a named programmer-defined exception?
Sometimes, it is necessary for programmers to name and trap their own exceptions - ones that aren't defined already by PL/SQL. These are called Named Programmer-Defined Exceptions.

The syntax for the Named Programmer-Defined Exception in a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter [,parameter])]
IS
 [declaration_section]

 exception_name EXCEPTION;

BEGIN
 executable_section

 RAISE exception_name ;

EXCEPTION
 WHEN exception_name THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [procedure_name];

The syntax for the Named Programmer-Defined Exception in a function is:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter [,parameter])]
 RETURN return_datatype
IS | AS
 [declaration_section]

 exception_name EXCEPTION;

BEGIN
 executable_section

 RAISE exception_name ;

EXCEPTION
 WHEN exception_name THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [function_name];

Here is an example of a procedure that uses a Named Programmer-Defined Exception:

CREATE OR REPLACE PROCEDURE add_new_order
 (order_id_in IN NUMBER, sales_in IN NUMBER)
IS
 no_sales EXCEPTION;

BEGIN
 IF sales_in = 0 THEN
 RAISE no_sales;

ELSE
 INSERT INTO orders (order_id, total_sales)
 VALUES (order_id_in, sales_in);
END IF;

EXCEPTION
 WHEN no_sales THEN
 raise_application_error (-20001,'You must have sales in order to submit the order.');

 WHEN OTHERS THEN
 raise_application_error (-20002,'An error has occurred inserting an order.');

END;

In this example, we have declared a Named Programmer-Defined Exception called no_sales in our declaration statement with the following code:

no_sales EXCEPTION;

We've then raised the exception in the executable section of the code:

 IF sales_in = 0 THEN
 RAISE no_sales;

Now if the sales_in variable contains a zero, our code will jump directly to the Named Programmer-Defined Exception called no_sales.

Finally, we tell our procedure what to do when the no_sales exception is encountered by including code in the WHEN clause:

WHEN no_sales THEN
 raise_application_error (-20001,'You must have sales in order to submit the order.');

We are also using the WHEN OTHERS clause to trap all remaining exceptions:

 WHEN OTHERS THEN
 raise_application_error (-20002,'An error has occurred inserting an order.');

WHEN OTHERS Clause
What is a WHEN OTHERS clause?
The WHEN OTHERS clause is used to trap all remaining exceptions that have not been handled by your Named System Exceptions and Named Programmer-Defined Exceptions.

The syntax for the WHEN OTHERS clause in a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter [,parameter])]
IS
 [declaration_section]
BEGIN
 executable_section

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [procedure_name];

The syntax for the WHEN OTHERS clause in a function is:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter [,parameter])]
 RETURN return_datatype
IS | AS
 [declaration_section]
BEGIN
 executable_section

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [function_name];

Here is an example of a procedure that uses a WHEN OTHERS clause:

CREATE OR REPLACE PROCEDURE add_new_order
 (order_id_in IN NUMBER, sales_in IN NUMBER)
IS
 no_sales EXCEPTION;

BEGIN
 IF sales_in = 0 THEN
 RAISE no_sales;

ELSE
 INSERT INTO orders (order_id, total_sales)
 VALUES (order_id_in, sales_in);
END IF;

EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 raise_application_error (-20001,'You have tried to insert a duplicate order_id.');

 WHEN no_sales THEN
 raise_application_error (-20001,'You must have sales in order to submit the order.');

 WHEN OTHERS THEN
 raise_application_error (-20002,'An error has occurred inserting an order.');

END;

In this example, if an exception is encountered that is not a DUP_VAL_ON_INDEX or a no_sales, it will be trapped by the WHEN OTHERS clause.

Frequently Asked Questions

Question: Is there any way to get the ORA error number (and/or description) for the errors that will fall into OTHERS?

Something like:

WHEN OTHERS THEN
'Error number ' & Err.Number& ' has happen.'

Answer: Yes, you can use SQLCODE function to retrieve the error number and SQLERRM function to retrieve the error message.

For example, you could raise the error as follows:

EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

Or you could log the error to a table as follows:

EXCEPTION
 WHEN OTHERS THEN
 err_code := SQLCODE;
 err_msg := substr(SQLERRM, 1, 200);

 INSERT INTO audit_table (error_number, error_message)
 VALUES (err_code, err_msg);
END;

SQLCODE Function
What does the SQLCODE Function do?
The SQLCODE function returns the error number associated with the most recently raised error exception. This function should only be used within the Exception Handling section of your code:

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [procedure_name];

You could use the SQLCODE function to raise an error as follows:

EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

Or you could log the error to a table as follows:

EXCEPTION
 WHEN OTHERS THEN
 err_code := SQLCODE;
 err_msg := substr(SQLERRM, 1, 200);

 INSERT INTO audit_table (error_number, error_message)
 VALUES (err_code, err_msg);
END;

SQLERRM Function
What does the SQLERRM Function do?
The SQLERRM function returns the error message associated with the most recently raised error exception. This function should only be used within the Exception Handling section of your code:

EXCEPTION
 WHEN exception_name1 THEN
 [statements]

 WHEN exception_name2 THEN
 [statements]

 WHEN exception_name_n THEN
 [statements]

 WHEN OTHERS THEN
 [statements]

END [procedure_name];

You could use the SQLERRM function to raise an error as follows:

EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -ERROR- '||SQLERRM);
END;

Or you could log the error to a table as follows:

EXCEPTION
 WHEN OTHERS THEN
 err_code := SQLCODE;
 err_msg := substr(SQLERRM, 1, 200);

 INSERT INTO audit_table (error_number, error_message)
 VALUES (err_code, err_msg);
END;

Learn more about the SQLCODE Function.

Oracle/PLSQL: Grant/Revoke Privileges

Grant Privileges on Tables
You can grant users various privileges to tables. These privileges can be any combination of select, insert, update, delete, references, alter, and index. Below is an explanation of what each privilege means.

	Privilege
	Description

	Select
	Ability to query the table with a select statement.

	Insert
	Ability to add new rows to the table with the insert statement.

	Update
	Ability to update rows in the table with the update statement.

	Delete
	Ability to delete rows from the table with the delete statement.

	References
	Ability to create a constraint that refers to the table.

	Alter
	Ability to change the table definition with the alter table statement.

	Index
	Ability to create an index on the table with the create index statement.

The syntax for granting privileges on a table is:

grant privileges on object to user;

For example, if you wanted to grant select, insert, update, and delete privileges on a table called suppliers to a user name smithj, you would execute the following statement:

grant select, insert, update, delete on suppliers to smithj;

You can also use the all keyword to indicate that you wish all permissions to be granted. For example:

grant all on suppliers to smithj;

If you wanted to grant select access on your table to all users, you could grant the privileges to the public keyword. For example:

grant select on suppliers to public;

Revoke Privileges on Tables
Once you have granted privileges, you may need to revoke some or all of these privileges. To do this, you can execute a revoke command. You can revoke any combination of select, insert, update, delete, references, alter, and index.

The syntax for revoking privileges on a table is:

revoke privileges on object from user;

For example, if you wanted to revoke delete privileges on a table called suppliers from a user named anderson, you would execute the following statement:

revoke delete on suppliers from anderson;

If you wanted to revoke all privileges on a table, you could use the all keyword. For example:

revoke all on suppliers from anderson;

If you had granted privileges to public (all users) and you wanted to revoke these privileges, you could execute the following statement:

revoke all on suppliers from public;

Grant Privileges on Functions/Procedures
When dealing with functions and procedures, you can grant users the ability to execute these functions and procedures. The Execute privilege is explained below:

	Privilege
	Description

	Execute
	Ability to compile the function/procedure.
Ability to execute the function/procedure directly.

The syntax for granting execute privileges on a function/procedure is:

grant execute on object to user;

For example, if you had a function called Find_Value and you wanted to grant execute access to the user named smithj, you would execute the following statement:

grant execute on Find_Value to smithj;

If you wanted to grant all users the ability to execute this function, you would execute the following:

grant execute on Find_Value to public;

Revoke Privileges on Functions/Procedures
Once you have granted execute privileges on a function or procedure, you may need to revoke these privileges from a user. To do this, you can execute a revoke command.

The syntax for the revoking privileges on a function or procedure is:

revoke execute on object from user;

If you wanted to revoke execute privileges on a function called Find_Value from a user named anderson, you would execute the following statement:

revoke execute on Find_Value from anderson;

If you had granted privileges to public (all users) and you wanted to revoke these privileges, you could execute the following statement:

revoke execute on Find_Value from public;

Oracle/PLSQL: Roles

A role is a set or group of privileges that can be granted to users or another role. This is a great way for database administrators to save time and effort.

Creating a Role
To create a role, you must have CREATE ROLE system privileges.

The syntax for creating a role is:

CREATE ROLE role_name
[NOT IDENTIFIED |
IDENTIFIED {BY password | USING [schema.] package | EXTERNALLY | GLOBALLY } ;

Note: If both the NOT IDENTIFIED and IDENTIFIED phrases are omitted in the CREATE ROLE statement, the role will be created as a NOT IDENTIFIED role.

The role_name phrase is the name of the new role that you are creating. This is how you will refer to the grouping of privileges.

The NOT IDENTIFIED phrase means that the role is immediately enabled. No password is required to enable the role.

The IDENTIFIED phrase means that a user must be authorized by a specified method before the role is enabled.

The BY password phrase means that a user must supply a password to enable the role.

The USING package phrase means that you are creating an application role - a role that is enabled only by applications using an authorized package.

The EXTERNALLY phrase means that a user must be authorized by an external service to enable the role. An external service can be an operating system or third-party service.

The GLOBALLY phrase means that a user must be authorized by the enterprise directory service to enable the role.

For example:

CREATE ROLE test_role;

This first example creates a role called test_role.

CREATE ROLE test_role
IDENTIFIED BY test123;

This second example creates the same role called test_role, but now it is password protected with the password of test123.

Grant Privileges (on Tables) to Roles
You can grant roles various privileges to tables. These privileges can be any combination of select, insert, update, delete, references, alter, and index. Below is an explanation of what each privilege means.

	Privilege
	Description

	Select
	Ability to query the table with a select statement.

	Insert
	Ability to add new rows to the table with the insert statement.

	Update
	Ability to update rows in the table with the update statement.

	Delete
	Ability to delete rows from the table with the delete statement.

	References
	Ability to create a constraint that refers to the table.

	Alter
	Ability to change the table definition with the alter table statement.

	Index
	Ability to create an index on the table with the create index statement.

The syntax for granting privileges on a table is:

grant privileges on object to role_name

For example, if you wanted to grant select, insert, update, and delete privileges on a table called suppliers to a role named test_role, you would execute the following statement:

grant select, insert, update, delete on suppliers to test_role;

You can also use the all keyword to indicate that you wish all permissions to be granted. For example:

grant all on suppliers to test_role;

Revoke Privileges (on Tables) to Roles
Once you have granted privileges, you may need to revoke some or all of these privileges. To do this, you can execute a revoke command. You can revoke any combination of select, insert, update, delete, references, alter, and index.

The syntax for revoking privileges on a table is:

revoke privileges on object from role_name;

For example, if you wanted to revoke delete privileges on a table called suppliers from a role named test_role, you would execute the following statement:

revoke delete on suppliers from test_role;

If you wanted to revoke all privileges on a table, you could use the all keyword. For example:

revoke all on suppliers from test_role;

Grant Privileges (on Functions/Procedures) to Roles
When dealing with functions and procedures, you can grant roles the ability to execute these functions and procedures. The Execute privilege is explained below:

	Privilege
	Description

	Execute
	Ability to compile the function/procedure.
Ability to execute the function/procedure directly.

The syntax for granting execute privileges on a function/procedure is:

grant execute on object to role_name;

For example, if you had a function called Find_Value and you wanted to grant execute access to the role named test_role, you would execute the following statement:

grant execute on Find_Value to test_role;

Revoke Privileges (on Functions/Procedures) to Roles
Once you have granted execute privileges on a function or procedure, you may need to revoke these privileges from a role. To do this, you can execute a revoke command.

The syntax for the revoking privileges on a function or procedure is:

revoke execute on object from role_name;

If you wanted to revoke execute privileges on a function called Find_Value from a role named test_role, you would execute the following statement:

revoke execute on Find_Value from test_role;

Granting the Role to a User
Now, that you've created the role and assigned the privileges to the role, you'll need to grant the role to specific users.

The syntax to grant a role to a user is:

GRANT role_name TO user_name;

For example:

GRANT test_role to smithj;

This example would grant the role called test_role to the user named smithj.

The SET ROLE statement
The SET ROLE statement allows you to enable or disable a role for a current session.

When a user logs into Oracle, all default roles are enabled, but non-default roles must be enabled with the SET ROLE statement.

The syntax for the SET ROLE statement is:

SET ROLE
(role_name [IDENTIFIED BY password]
| ALL [EXCEPT role1, role2, ...]
| NONE);

The role_name phrase is the name of the role that you wish to enable.

The IDENTIFIED BY password phrase is the password for the role to enable it. If the role does not have a password, this phrase can be omitted.

The ALL phrase means that all roles should be enabled for this current session, except those listed in the EXCEPT phrase.

The NONE phrase disables all roles for the current session. (including all default roles)

For example:

SET ROLE test_role IDENTIFIED BY test123;

This example would enable the role called test_role with a password of test123.

Setting a role as DEFAULT Role
A default role means that the role is always enabled for the current session at logon. It is not necessary to issue the SET ROLE statement. To set a role as a DEFAULT role, you need to issue the ALTER USER statement.

The syntax for setting a role as a DEFAULT role is:

ALTER USER user_name
DEFAULT ROLE
(role_name
| ALL [EXCEPT role1, role2, ...]
| NONE);

The user_name phrase is the name of the user whose role you are setting as DEFAULT.

The role_name phrase is the name of the role that you wish to set as DEFAULT.

The ALL phrase means that all roles should be enabled as DEFAULT, except those listed in the EXCEPT phrase.

The NONE phrase disables all roles as DEFAULT.

For example:

ALTER USER smithj
DEFAULT ROLE
test_role;

This example would set the role called test_role as a DEFAULT role for the user named smithj.

ALTER USER smithj
DEFAULT ROLE
ALL;

This example would set all roles assigned to smithj as DEFAULT.

ALTER USER smithj
DEFAULT ROLE
ALL EXCEPT test_role;

This example would set all roles assigned to smithj as DEFAULT, except for the role called test_role.

Dropping a Role
It is also possible to drop a role. The syntax for dropping a role is:

DROP ROLE role_name;

For example:

DROP ROLE test_role;

This drop statement would drop the role called test_role that we defined earlier.

Oracle/PLSQL: Change a user's password in Oracle

Question: How do I change the password for a user in Oracle?

Answer: To change a user's password in Oracle, you need to execute the alter user command.

The syntax for changing a password is:

alter user user_name identified by new_password;

user_name is the user whose password you wish to change.

new_password is the new password to assign.

For example:

If you wanted to reset the password for a user named smithj, and you wanted to set the new password to autumn, you would run the following command:

alter user smithj identified by autumn;

ORACLE
SQL: SELECT Statement

The SELECT statement allows you to retrieve records from one or more tables in your database.

The syntax for the SELECT statement is:

SELECT columns
FROM tables
WHERE predicates;

Example #1

Let's take a look at how to select all fields from a table.

SELECT *
FROM suppliers
WHERE city = 'Newark';

In our example, we've used * to signify that we wish to view all fields from the suppliers table where the supplier resides in Newark.

Example #2

You can also choose to select individual fields as opposed to all fields in the table.

For example:

SELECT name, city, state
FROM suppliers
WHERE supplier_id > 1000;

This select statement would return all name, city, and state values from the suppliers table where the supplier_id value is greater than 1000.

Example #3

You can also use the select statement to retrieve fields from multiple tables.

SELECT orders.order_id, suppliers.name
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id;

The result set would display the order_id and suppier name fields where the supplier_id value existed in both the suppliers and orders table.

Learn more about joins.

SQL: DISTINCT Clause

The DISTINCT clause allows you to remove duplicates from the result set. The DISTINCT clause can only be used with select statements.

The syntax for the DISTINCT clause is:

SELECT DISTINCT columns
FROM tables
WHERE predicates;

Example #1

Let's take a look at a very simple example.

SELECT DISTINCT city
FROM suppliers;

This SQL statement would return all unique cities from the suppliers table.

Example #2

The DISTINCT clause can be used with more than one field.

For example:

SELECT DISTINCT city, state
FROM suppliers;

This select statement would return each unique city and state combination. In this case, the distinct applies to each field listed after the DISTINCT keyword.

SQL: COUNT Function

The COUNT function returns the number of rows in a query.

The syntax for the COUNT function is:

SELECT COUNT(expression)
FROM tables
WHERE predicates;

Note:

The COUNT function will only count those records in which the field in the brackets is NOT NULL.

For example, if you have the following table called suppliers:

	Supplier_ID
	Supplier_Name
	State

	1
	IBM
	CA

	2
	Microsoft
	

	3
	NVIDIA
	

The result for this query will return 3.

Select COUNT(Supplier_ID) from suppliers;

While the result for the next query will only return 1, since there is only one row in the suppliers table where the State field is NOT NULL.

Select COUNT(State) from suppliers;

Simple Example

For example, you might wish to know how many employees have a salary that is above $25,000 / year.

SELECT COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000;

In this example, we've aliased the count(*) field as "Number of employees". As a result, "Number of employees" will display as the field name when the result set is returned.

Example using DISTINCT

You can use the DISTINCT clause within the COUNT function.

For example, the SQL statement below returns the number of unique departments where at least one employee makes over $25,000 / year.

SELECT COUNT(DISTINCT department) as "Unique departments"
FROM employees
WHERE salary > 25000;

Again, the count(DISTINCT department) field is aliased as "Unique departments". This is the field name that will display in the result set.

Example using GROUP BY

In some cases, you will be required to use a GROUP BY clause with the COUNT function.

For example, you could use the COUNT function to return the name of the department and the number of employees (in the associated department) that make over $25,000 / year.

SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;

Because you have listed one column in your SELECT statement that is not encapsulated in the COUNT function, you must use a GROUP BY clause. The department field must, therefore, be listed in the GROUP BY section.

TIP: Performance Tuning

Since the COUNT function will return the same results regardless of what NOT NULL field(s) you include as the COUNT function parameters (ie: within the brackets), you can change the syntax of the COUNT function to COUNT(1) to get better performance as the database engine will not have to fetch back the data fields.

For example, based on the example above, the following syntax would result in better performance:

SELECT department, COUNT(1) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;

Now, the COUNT function does not need to retrieve all fields from the employees table as it had to when you used the COUNT(*) syntax. It will merely retrieve the numeric value of 1 for each record that meets your criteria.

Practice Exercise #1:

Based on the employees table populated with the following data, count the number of employees whose salary is over $55,000 per year.

	CREATE TABLE employees

	(
	employee_number
	number(10)
	not null,

	
	employee_name
	varchar2(50)
	not null,

	
	salary
	number(6),
	

	
	CONSTRAINT employees_pk PRIMARY KEY (employee_number)

);
	
	
	

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1001, 'John Smith', 62000);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1002, 'Jane Anderson', 57500);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1003, 'Brad Everest', 71000);

INSERT INTO employees (employee_number, employee_name, salary)
VALUES (1004, 'Jack Horvath', 42000);

Solution:

Although inefficient in terms of performance, the following SQL statement would return the number of employees whose salary is over $55,000 per year.

SELECT COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 55000;

It would return the following result set:

	Number of employees

	3

A more efficient implementation of the same solution would be the following SQL statement:

SELECT COUNT(1) as "Number of employees"
FROM employees
WHERE salary > 55000;

Now, the COUNT function does not need to retrieve all of the fields from the table (ie: employee_number, employee_name, and salary), but rather whenever the condition is met, it will retrieve the numeric value of 1. Thus, increasing the performance of the SQL statement.

Practice Exercise #2:

Based on the suppliers table populated with the following data, count the number of distinct cities in the suppliers table:

	CREATE TABLE suppliers

	(
	supplier_id
	number(10)
	not null,

	
	supplier_name
	varchar2(50)
	not null,

	
	city
	varchar2(50),
	

	
	CONSTRAINT suppliers_pk PRIMARY KEY (supplier_id)

);
	
	
	

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5001, 'Microsoft', 'New York');

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5002, 'IBM', 'Chicago');

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5003, 'Red Hat', 'Detroit');

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5004, 'NVIDIA', 'New York');

INSERT INTO suppliers (supplier_id, supplier_name, city)
VALUES (5005, 'NVIDIA', 'LA');

Solution:

The following SQL statement would return the number of distinct cities in the suppliers table:

SELECT COUNT(DISTINCT city) as "Distinct Cities"
FROM suppliers;

It would return the following result set:

	Distinct Cities

	4

Practice Exercise #3:

Based on the customers table populated with the following data, count the number of distinct cities for each customer_name in the customers table:

	CREATE TABLE customers

	(
	customer_id
	number(10)
	not null,

	
	customer_name
	varchar2(50)
	not null,

	
	city
	varchar2(50),
	

	
	CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);
	
	
	

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7001, 'Microsoft', 'New York');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7002, 'IBM', 'Chicago');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7003, 'Red Hat', 'Detroit');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7004, 'Red Hat', 'New York');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7005, 'Red Hat', 'San Francisco');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7006, 'NVIDIA', 'New York');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7007, 'NVIDIA', 'LA');

INSERT INTO customers (customer_id, customer_name, city)
VALUES (7008, 'NVIDIA', 'LA');

Solution:

The following SQL statement would return the number of distinct cities for each customer_name in the customers table:

SELECT customer_name, COUNT(DISTINCT city) as "Distinct Cities"
FROM customers
GROUP BY customer_name;

It would return the following result set:

	CUSTOMER_NAME
	Distinct Cities

	IBM
	1

	Microsoft
	1

	NVIDIA
	2

	Red Hat
	3

SQL: SUM Function

The SUM function returns the summed value of an expression.

The syntax for the SUM function is:

SELECT SUM(expression)
FROM tables
WHERE predicates;

expression can be a numeric field or formula.

Simple Example

For example, you might wish to know how the combined total salary of all employees whose salary is above $25,000 / year.

SELECT SUM(salary) as "Total Salary"
FROM employees
WHERE salary > 25000;

In this example, we've aliased the sum(salary) field as "Total Salary". As a result, "Total Salary" will display as the field name when the result set is returned.

Example using DISTINCT

You can use the DISTINCT clause within the SUM function. For example, the SQL statement below returns the combined total salary of unique salary values where the salary is above $25,000 / year.

SELECT SUM(DISTINCT salary) as "Total Salary"
FROM employees
WHERE salary > 25000;

If there were two salaries of $30,000/year, only one of these values would be used in the SUM function.

Example using a Formula

The expression contained within the SUM function does not need to be a single field. You could also use a formula. For example, you might want the net income for a business. Net Income is calculated as total income less total expenses.

SELECT SUM(income - expenses) as "Net Income"
FROM gl_transactions;

You might also want to perform a mathematical operation within a SUM function. For example, you might determine total commission as 10% of total sales.

SELECT SUM(sales * 0.10) as "Commission"
FROM order_details;

Example using GROUP BY

In some cases, you will be required to use a GROUP BY clause with the SUM function.

For example, you could also use the SUM function to return the name of the department and the total sales (in the associated department).

SELECT department, SUM(sales) as "Total sales"
FROM order_details
GROUP BY department;

Because you have listed one column in your SELECT statement that is not encapsulated in the SUM function, you must use a GROUP BY clause. The department field must, therefore, be listed in the GROUP BY section.

SQL: MIN Function

The MIN function returns the minimum value of an expression.

The syntax for the MIN function is:

SELECT MIN(expression)
FROM tables
WHERE predicates;

Simple Example

For example, you might wish to know the minimum salary of all employees.

SELECT MIN(salary) as "Lowest salary"
FROM employees;

In this example, we've aliased the min(salary) field as "Lowest salary". As a result, "Lowest salary" will display as the field name when the result set is returned.

Example using GROUP BY

In some cases, you will be required to use a GROUP BY clause with the MIN function.

For example, you could also use the MIN function to return the name of each department and the minimum salary in the department.

SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department;

Because you have listed one column in your SELECT statement that is not encapsulated in the MIN function, you must use a GROUP BY clause. The department field must, therefore, be listed in the GROUP BY section.

SQL: MAX Function

The MAX function returns the maximum value of an expression.

The syntax for the MAX function is:

SELECT MAX(expression)
FROM tables
WHERE predicates;

Simple Example

For example, you might wish to know the maximum salary of all employees.

SELECT MAX(salary) as "Highest salary"
FROM employees;

In this example, we've aliased the max(salary) field as "Highest salary". As a result, "Highest salary" will display as the field name when the result set is returned.

Example using GROUP BY

In some cases, you will be required to use a GROUP BY clause with the MAX function.

For example, you could also use the MAX function to return the name of each department and the maximum salary in the department.

SELECT department, MAX(salary) as "Highest salary"
FROM employees
GROUP BY department;

Because you have listed one column in your SELECT statement that is not encapsulated in the MAX function, you must use a GROUP BY clause. The department field must, therefore, be listed in the GROUP BY section.

Frequently Asked Questions

Question: I'm trying to pull some info out of a table. To simplify, let's say the table (report_history) has 4 columns:

user_name, report_job_id, report_name, report_run_date.

Each time a report is run in Oracle, a record is written to this table noting the above info. What I am trying to do is pull from this table when the last time each distinct report was run and who ran it last.

My initial query:

SELECT report_name, max(report_run_date)
FROM report_history
GROUP BY report_name

runs fine. However, it does not provide the name of the user who ran the report.

Adding user_name to both the select list and to the group by clause returns multiple lines for each report; the results show the last time each person ran each report in question. (i.e. User1 ran Report 1 on 01-JUL-03, User2 ran Report1 on 01-AUG-03). I don't want that....I just want to know who ran a particular report the last time it was run.

Any suggestions?

Answer: This is where things get a bit complicated. The SQL statement below will return the results that you want:

SELECT rh.user_name, rh.report_name, rh.report_run_date
FROM report_history rh,
 (SELECT max(report_run_date) as maxdate, report_name
 FROM report_history
 GROUP BY report_name) maxresults
WHERE rh.report_name = maxresults.report_name
AND rh.report_run_date= maxresults.maxdate;

Let's take a few moments to explain what we've done.

First, we've aliased the first instance of the report_history table as rh.

Second, we've included two components in our FROM clause. The first is the table called report_history (aliased as rh). The second is a select statement:

 (SELECT max(report_run_date) as maxdate, report_name
 FROM report_history
 GROUP BY report_name) maxresults

We've aliased the max(report_run_date) as maxdate and we've aliased the entire result set as maxresults.

Now, that we've created this select statement within our FROM clause, Oracle will let us join these results against our original report_history table. So we've joined the report_name and report_run_date fields between the tables called rh and maxresults. This allows us to retrieve the report_name, max(report_run_date) as well as the user_name.

Question: I need help in an SQL query. I have a table in Oracle called orders which has the following fields: order_no, customer, and amount.

I need a query that will return the customer who has ordered the highest total amount.

Answer: The following SQL should return the customer with the highest total amount in the orders table.

select query1.* from
 (SELECT customer, Sum(orders.amount) AS total_amt
 FROM orders
 GROUP BY orders.customer) query1,

 (select max(query2.total_amt) as highest_amt
 from (SELECT customer, Sum(orders.amount) AS total_amt
 FROM orders
 GROUP BY orders.customer) query2) query3
where query1.total_amt = query3.highest_amt;

This SQL statement will summarize the total orders for each customer and then return the customer with the highest total orders. This syntax is optimized for Oracle and may not work for other database technologies.

Question: I'm trying to retrieve some info from an Oracle database. I've got a table named Scoring with two fields - Name and Score. What I want to get is the highest score from the table and the name of the player.

Answer: The following SQL should work:

SELECT Name, Score
FROM Scoring
WHERE Score = (select Max(Score) from Scoring);

SQL: WHERE Clause

The WHERE clause allows you to filter the results from an SQL statement - select, insert, update, or delete statement.

It is difficult to explain the basic syntax for the WHERE clause, so instead, we'll take a look at some examples.

Example #1

SELECT *
FROM suppliers
WHERE supplier_name = 'IBM';

In this first example, we've used the WHERE clause to filter our results from the suppliers table. The SQL statement above would return all rows from the suppliers table where the supplier_name is IBM. Because the * is used in the select, all fields from the suppliers table would appear in the result set.

Example #2

SELECT supplier_id
FROM suppliers
WHERE supplier_name = 'IBM'
or supplier_city = 'Newark';

We can define a WHERE clause with multiple conditions. This SQL statement would return all supplier_id values where the supplier_name is IBM or the supplier_city is Newark.

Example #3

SELECT suppliers.suppler_name, orders.order_id
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
and suppliers.supplier_city = 'Atlantic City';

We can also use the WHERE clause to join multiple tables together in a single SQL statement. This SQL statement would return all supplier names and order_ids where there is a matching record in the suppliers and orders tables based on supplier_id, and where the supplier_city is Atlantic City.

Learn more about joins.

SQL: "AND" Condition

The AND condition allows you to create an SQL statement based on 2 or more conditions being met. It can be used in any valid SQL statement - select, insert, update, or delete.

The syntax for the AND condition is:

SELECT columns
FROM tables
WHERE column1 = 'value1'
and column2 = 'value2';

The AND condition requires that each condition be must be met for the record to be included in the result set. In this case, column1 has to equal 'value1' and column2 has to equal 'value2'.

Example #1

The first example that we'll take a look at involves a very simple example using the AND condition.

SELECT *
FROM suppliers
WHERE city = 'New York'
and type = 'PC Manufacturer';

This would return all suppliers that reside in New York and are PC Manufacturers. Because the * is used in the select, all fields from the supplier table would appear in the result set.

Example #2

Our next example demonstrates how the AND condition can be used to "join" multiple tables in an SQL statement.

SELECT orders.order_id, suppliers.supplier_name
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
and suppliers.supplier_name = 'IBM';

This would return all rows where the supplier_name is IBM. And the suppliers and orders tables are joined on supplier_id. You will notice that all of the fields are prefixed with the table names (ie: orders.order_id). This is required to eliminate any ambiguity as to which field is being referenced; as the same field name can exist in both the suppliers and orders tables.

In this case, the result set would only display the order_id and supplier_name fields (as listed in the first part of the select statement.).

Learn more about joins.

SQL: "OR" Condition

The OR condition allows you to create an SQL statement where records are returned when any one of the conditions are met. It can be used in any valid SQL statement - select, insert, update, or delete.

The syntax for the OR condition is:

SELECT columns
FROM tables
WHERE column1 = 'value1'
or column2 = 'value2';

The OR condition requires that any of the conditions be must be met for the record to be included in the result set. In this case, column1 has to equal 'value1' OR column2 has to equal 'value2'.

Example #1

The first example that we'll take a look at involves a very simple example using the OR condition.

SELECT *
FROM suppliers
WHERE city = 'New York'
or city = 'Newark';

This would return all suppliers that reside in either New York or Newark. Because the * is used in the select, all fields from the suppliers table would appear in the result set.

SQL: Combining the "AND" and "OR" Conditions

The AND and OR conditions can be combined in a single SQL statement. It can be used in any valid SQL statement - select, insert, update, or delete.

When combining these conditions, it is important to use brackets so that the database knows what order to evaluate each condition.

Example #1

The first example that we'll take a look at an example that combines the AND and OR conditions.

SELECT *
FROM suppliers
WHERE (city = 'New York' and name = 'IBM')
or (city = 'Newark');

This would return all suppliers that reside in New York whose name is IBM and all suppliers that reside in Newark. The brackets determine what order the AND and OR conditions are evaluated in.

Example #2

The next example takes a look at a more complex statement.

For example:

SELECT supplier_id
FROM suppliers
WHERE (name = 'IBM')
or (name = 'Hewlett Packard' and city = 'Atlantic City')
or (name = 'Gateway' and status = 'Active' and city = 'Burma');

This SQL statement would return all supplier_id values where the supplier's name is IBM or the name is Hewlett Packard and the city is Atlantic City or the name is Gateway, the status is Active, and the city is Burma.

SQL: LIKE Condition

The LIKE condition allows you to use wildcards in the where clause of an SQL statement. This allows you to perform pattern matching. The LIKE condition can be used in any valid SQL statement - select, insert, update, or delete.

The patterns that you can choose from are:

% allows you to match any string of any length (including zero length)

_ allows you to match on a single character

Examples using % wildcard

The first example that we'll take a look at involves using % in the where clause of a select statement. We are going to try to find all of the suppliers whose name begins with 'Hew'.

SELECT * FROM suppliers
WHERE supplier_name like 'Hew%';

You can also using the wildcard multiple times within the same string. For example,

SELECT * FROM suppliers
WHERE supplier_name like '%bob%';

In this example, we are looking for all suppliers whose name contains the characters 'bob'.

You could also use the LIKE condition to find suppliers whose name does not start with 'T'. For example,

SELECT * FROM suppliers
WHERE supplier_name not like 'T%';

By placing the not keyword in front of the LIKE condition, you are able to retrieve all suppliers whose name does not start with 'T'.

Examples using _ wildcard

Next, let's explain how the _ wildcard works. Remember that the _ is looking for only one character.

For example,

SELECT * FROM suppliers
WHERE supplier_name like 'Sm_th';

This SQL statement would return all suppliers whose name is 5 characters long, where the first two characters is 'Sm' and the last two characters is 'th'. For example, it could return suppliers whose name is 'Smith', 'Smyth', 'Smath', 'Smeth', etc.

Here is another example,

SELECT * FROM suppliers
WHERE account_number like '12317_';

You might find that you are looking for an account number, but you only have 5 of the 6 digits. The example above, would retrieve potentially 10 records back (where the missing value could equal anything from 0 to 9). For example, it could return suppliers whose account numbers are:

123170
123171
123172
123173
123174
123175
123176
123177
123178
123179.

Examples using Escape Characters

Next, in Oracle, let's say you wanted to search for a % or a _ character in a LIKE condition. You can do this using an Escape character.

Please note that you can define an escape character as a single character (length of 1) ONLY.

For example,

SELECT * FROM suppliers
WHERE supplier_name LIKE '!%' escape '!';

This SQL statement identifies the ! character as an escape character. This statement will return all suppliers whose name is %.

Here is another more complicated example:

SELECT * FROM suppliers
WHERE supplier_name LIKE 'H%!%' escape '!';

This example returns all suppliers whose name starts with H and ends in %. For example, it would return a value such as 'Hello%'.

You can also use the Escape character with the _ character. For example,

SELECT * FROM suppliers
WHERE supplier_name LIKE 'H%!_' escape '!';

This example returns all suppliers whose name starts with H and ends in _. For example, it would return a value such as 'Hello_'.

Frequently Asked Questions

Question: How do you incorporate the Oracle upper function with the LIKE condition? I'm trying to query against a free text field for all records containing the word "test". The problem is that it can be entered in the following ways: TEST, Test, or test.

Answer: To answer this question, let's take a look at an example.

Let's say that we have a suppliers table with a field called supplier_name that contains the values TEST, Test, or test.

If we wanted to find all records containing the word "test", regardless of whether it was stored as TEST, Test, or test, we could run either of the following SQL statements:

select * from suppliers
where upper(supplier_name) like ('TEST%');

or

select * from suppliers
where upper(supplier_name) like upper('test%')

These SQL statements use a combination of the upper function and the LIKE condition to return all of the records where the supplier_name field contains the word "test", regardless of whether it was stored as TEST, Test, or test.

SQL: "IN" Function

The IN function helps reduce the need to use multiple OR conditions.

The syntax for the IN function is:

SELECT columns
FROM tables
WHERE column1 in (value1, value2, value_n);

This SQL statement will return the records where column1 is value1, value2..., or value_n. The IN function can be used in any valid SQL statement - select, insert, update, or delete.

Example #1

The following is an SQL statement that uses the IN function:

SELECT *
FROM suppliers
WHERE supplier_name in ('IBM', 'Hewlett Packard', 'Microsoft');

This would return all rows where the supplier_name is either IBM, Hewlett Packard, or Microsoft. Because the * is used in the select, all fields from the suppliers table would appear in the result set.

It is equivalent to the following statement:

SELECT *
FROM suppliers
WHERE supplier_name = 'IBM'
OR supplier_name = 'Hewlett Packard'
OR supplier_name = 'Microsoft';

As you can see, using the IN function makes the statement easier to read and more efficient.

Example #2

You can also use the IN function with numeric values.

SELECT *
FROM orders
WHERE order_id in (10000, 10001, 10003, 10005);

This SQL statement would return all orders where the order_id is either 10000, 10001, 10003, or 10005.

It is equivalent to the following statement:

SELECT *
FROM orders
WHERE order_id = 10000
OR order_id = 10001
OR order_id = 10003
OR order_id = 10005;

Example #3 using "NOT IN"

The IN function can also be combined with the NOT operator.

For example,

SELECT *
FROM suppliers
WHERE supplier_name not in ('IBM', 'Hewlett Packard', 'Microsoft');

This would return all rows where the supplier_name is neither IBM, Hewlett Packard, or Microsoft. Sometimes, it is more efficient to list the values that you do not want, as opposed to the values that you do want.

SQL: BETWEEN Condition

The BETWEEN condition allows you to retrieve values within a range.

The syntax for the BETWEEN condition is:

SELECT columns
FROM tables
WHERE column1 between value1 and value2;

This SQL statement will return the records where column1 is within the range of value1 and value2 (inclusive). The BETWEEN function can be used in any valid SQL statement - select, insert, update, or delete.

Example #1 - Numbers

The following is an SQL statement that uses the BETWEEN function:

SELECT *
FROM suppliers
WHERE supplier_id between 5000 AND 5010;

This would return all rows where the supplier_id is between 5000 and 5010, inclusive. It is equivalent to the following SQL statement:

SELECT *
FROM suppliers
WHERE supplier_id >= 5000
AND supplier_id <= 5010;

Example #2 - Dates

You can also use the BETWEEN function with dates.

SELECT *
FROM orders
WHERE order_date between to_date ('2003/01/01', 'yyyy/mm/dd')
AND to_date ('2003/12/31', 'yyyy/mm/dd');

This SQL statement would return all orders where the order_date is between Jan 1, 2003 and Dec 31, 2003 (inclusive).

It would be equivalent to the following SQL statement:

SELECT *
FROM orders
WHERE order_date >= to_date('2003/01/01', 'yyyy/mm/dd')
AND order_date <= to_date('2003/12/31','yyyy/mm/dd');

Example #3 - NOT BETWEEN

The BETWEEN function can also be combined with the NOT operator.

For example,

SELECT *
FROM suppliers
WHERE supplier_id not between 5000 and 5500;

This would be equivalent to the following SQL:

SELECT *
FROM suppliers
WHERE supplier_id < 5000
OR supplier_id > 5500;

In this example, the result set would exclude all supplier_id values between the range of 5000 and 5500 (inclusive).

SQL: EXISTS Condition

The EXISTS condition is considered "to be met" if the subquery returns at least one row.

The syntax for the EXISTS condition is:

SELECT columns
FROM tables
WHERE EXISTS (subquery);

The EXISTS condition can be used in any valid SQL statement - select, insert, update, or delete.

Example #1

Let's take a look at a simple example. The following is an SQL statement that uses the EXISTS condition:

SELECT *
FROM suppliers
WHERE EXISTS
 (select *
 from orders
 where suppliers.supplier_id = orders.supplier_id);

This select statement will return all records from the suppliers table where there is at least one record in the orders table with the same supplier_id.

Example #2 - NOT EXISTS

The EXISTS condition can also be combined with the NOT operator.

For example,

SELECT *
FROM suppliers
WHERE not exists (select * from orders Where suppliers.supplier_id = orders.supplier_id);

This will return all records from the suppliers table where there are no records in the orders table for the given supplier_id.

Example #3 - DELETE Statement

The following is an example of a delete statement that utilizes the EXISTS condition:

DELETE FROM suppliers
WHERE EXISTS
 (select *
 from orders
 where suppliers.supplier_id = orders.supplier_id);

Example #4 - UPDATE Statement

The following is an example of an update statement that utilizes the EXISTS condition:

	UPDATE suppliers
	

	SET supplier_name =
	(SELECT customers.name
FROM customers
WHERE customers.customer_id = suppliers.supplier_id)

	WHERE EXISTS
 (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id);

Example #5 - INSERT Statement

The following is an example of an insert statement that utilizes the EXISTS condition:

INSERT INTO suppliers
(supplier_id, supplier_name)
SELECT account_no, name
FROM suppliers
WHERE exists (select * from orders Where suppliers.supplier_id = orders.supplier_id);

SQL: GROUP BY Clause

The GROUP BY clause can be used in a SELECT statement to collect data across multiple records and group the results by one or more columns.

The syntax for the GROUP BY clause is:

SELECT column1, column2, ... column_n, aggregate_function (expression)
FROM tables
WHERE predicates
GROUP BY column1, column2, ... column_n;

aggregate_function can be a function such as SUM, COUNT, MIN, or MAX.

Example using the SUM function

For example, you could also use the SUM function to return the name of the department and the total sales (in the associated department).

SELECT department, SUM(sales) as "Total sales"
FROM order_details
GROUP BY department;

Because you have listed one column in your SELECT statement that is not encapsulated in the SUM function, you must use a GROUP BY clause. The department field must, therefore, be listed in the GROUP BY section.

Example using the COUNT function

For example, you could use the COUNT function to return the name of the department and the number of employees (in the associated department) that make over $25,000 / year.

SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department;

Example using the MIN function

For example, you could also use the MIN function to return the name of each department and the minimum salary in the department.

SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department;

Example using the MAX function

For example, you could also use the MAX function to return the name of each department and the maximum salary in the department.

SELECT department, MAX(salary) as "Highest salary"
FROM employees
GROUP BY department;

SQL: HAVING Clause

The HAVING clause is used in combination with the GROUP BY clause. It can be used in a SELECT statement to filter the records that a GROUP BY returns.

The syntax for the HAVING clause is:

SELECT column1, column2, ... column_n, aggregate_function (expression)
FROM tables
WHERE predicates
GROUP BY column1, column2, ... column_n
HAVING condition1 ... condition_n;

aggregate_function can be a function such as SUM, COUNT, MIN, or MAX.

Example using the SUM function

For example, you could also use the SUM function to return the name of the department and the total sales (in the associated department). The HAVING clause will filter the results so that only departments with sales greater than $1000 will be returned.

SELECT department, SUM(sales) as "Total sales"
FROM order_details
GROUP BY department
HAVING SUM(sales) > 1000;

Example using the COUNT function

For example, you could use the COUNT function to return the name of the department and the number of employees (in the associated department) that make over $25,000 / year. The HAVING clause will filter the results so that only departments with more than 10 employees will be returned.

SELECT department, COUNT(*) as "Number of employees"
FROM employees
WHERE salary > 25000
GROUP BY department
HAVING COUNT(*) > 10;

Example using the MIN function

For example, you could also use the MIN function to return the name of each department and the minimum salary in the department. The HAVING clause will return only those departments where the starting salary is $35,000.

SELECT department, MIN(salary) as "Lowest salary"
FROM employees
GROUP BY department
HAVING MIN(salary) = 35000;

Example using the MAX function

For example, you could also use the MAX function to return the name of each department and the maximum salary in the department. The HAVING clause will return only those departments whose maximum salary is less than $50,000.

SELECT department, MAX(salary) as "Highest salary"
FROM employees
GROUP BY department
HAVING MAX(salary) < 50000;

SQL: ORDER BY Clause

The ORDER BY clause allows you to sort the records in your result set. The ORDER BY clause can only be used in SELECT statements.

The syntax for the ORDER BY clause is:

SELECT columns
FROM tables
WHERE predicates
ORDER BY column ASC/DESC;

The ORDER BY clause sorts the result set based on the columns specified. If the ASC or DESC value is omitted, it is sorted by ASC.

ASC indicates ascending order. (default)
DESC indicates descending order.

Example #1

SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY supplier_city;

This would return all records sorted by the supplier_city field in ascending order.

Example #2

SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY supplier_city DESC;

This would return all records sorted by the supplier_city field in descending order.

Example #3

You can also sort by relative position in the result set, where the first field in the result set is 1. The next field is 2, and so on.

SELECT supplier_city
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY 1 DESC;

This would return all records sorted by the supplier_city field in descending order, since the supplier_city field is in position #1 in the result set.

Example #4

SELECT supplier_city, supplier_state
FROM suppliers
WHERE supplier_name = 'IBM'
ORDER BY supplier_city DESC, supplier_state ASC;

This would return all records sorted by the supplier_city field in descending order, with a secondary sort by supplier_state in ascending order.

SQL: Joins

A join is used to combine rows from multiple tables. A join is performed whenever two or more tables is listed in the FROM clause of an SQL statement.

There are different kinds of joins. Let's take a look at a few examples.

Inner Join (simple join)
Chances are, you've already written an SQL statement that uses an inner join. It is the most common type of join. Inner joins return all rows from multiple tables where the join condition is met.

For example,

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id;

This SQL statement would return all rows from the suppliers and orders tables where there is a matching supplier_id value in both the suppliers and orders tables.

Let's look at some data to explain how inner joins work:

We have a table called suppliers with two fields (supplier_id and supplier_ name).
It contains the following data:

	supplier_id
	supplier_name

	10000
	IBM

	10001
	Hewlett Packard

	10002
	Microsoft

	10003
	NVIDIA

We have another table called orders with three fields (order_id, supplier_id, and order_date).
It contains the following data:

	order_id
	supplier_id
	order_date

	500125
	10000
	2003/05/12

	500126
	10001
	2003/05/13

If we run the SQL statement below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

	supplier_id
	name
	order_date

	10000
	IBM
	2003/05/12

	10001
	Hewlett Packard
	2003/05/13

The rows for Microsoft and NVIDIA from the supplier table would be omitted, since the supplier_id's 10002 and 10003 do not exist in both tables.

Outer Join
Another type of join is called an outer join. This type of join returns all rows from one table and only those rows from a secondary table where the joined fields are equal (join condition is met).

For example,

select suppliers.supplier_id, suppliers.supplier_name, orders.order_date
from suppliers, orders
where suppliers.supplier_id = orders.supplier_id(+);

This SQL statement would return all rows from the suppliers table and only those rows from the orders table where the joined fields are equal.

The (+) after the orders.supplier_id field indicates that, if a supplier_id value in the suppliers table does not exist in the orders table, all fields in the orders table will display as <null> in the result set.

The above SQL statement could also be written as follows:

select suppliers.supplier_id, suppliers.supplier_name, orders.order_date
from suppliers, orders
where orders.supplier_id(+) = suppliers.supplier_id

Let's look at some data to explain how outer joins work:

We have a table called suppliers with two fields (supplier_id and name).
It contains the following data:

	supplier_id
	supplier_name

	10000
	IBM

	10001
	Hewlett Packard

	10002
	Microsoft

	10003
	NVIDIA

We have a second table called orders with three fields (order_id, supplier_id, and order_date).
It contains the following data:

	order_id
	supplier_id
	order_date

	500125
	10000
	2003/05/12

	500126
	10001
	2003/05/13

If we run the SQL statement below:

select suppliers.supplier_id, suppliers.supplier_name, orders.order_date
from suppliers, orders
where suppliers.supplier_id = orders.supplier_id(+);

Our result set would look like this:

	supplier_id
	supplier_name
	order_date

	10000
	IBM
	2003/05/12

	10001
	Hewlett Packard
	2003/05/13

	10002
	Microsoft
	<null>

	10003
	NVIDIA
	<null>

The rows for Microsoft and NVIDIA would be included because an outer join was used. However, you will notice that the order_date field for those records contains a <null> value.

Oracle/PLSQL: Subqueries

What is a subquery?
A subquery is a query within a query. In Oracle, you can create subqueries within your SQL statements. These subqueries can reside in the WHERE clause, the FROM clause, or the SELECT clause.

WHERE clause
Most often, the subquery will be found in the WHERE clause. These subqueries are also called nested subqueries.

For example:

	select * from all_tables tabs

	where tabs.table_name in
	(select cols.table_name

	
	 from all_tab_columns cols

	
	 where cols.column_name = 'SUPPLIER_ID');

Limitations:

Oracle allows up to 255 levels of subqueries in the WHERE clause.

FROM clause
A subquery can also be found in the FROM clause. These are called inline views.

For example:

select suppliers.name, subquery1.total_amt
from suppliers,
 (select supplier_id, Sum(orders.amount) as total_amt
 from orders
 group by supplier_id) subquery1,
where subquery1.supplier_id = suppliers.supplier_id;

In this example, we've created a subquery in the FROM clause as follows:

(select supplier_id, Sum(orders.amount) as total_amt
 from orders
 group by supplier_id) subquery1

This subquery has been aliased with the name subquery1. This will be the name used to reference this subquery or any of its fields.

Limitations:

Oracle allows an unlimited number of subqueries in the FROM clause.

SELECT clause
A subquery can also be found in the SELECT clause.

For example:

select tbls.owner, tbls.table_name,
 (select count(column_name) as total_columns
 from all_tab_columns cols
 where cols.owner = tbls.owner
 and cols.table_name = tbls.table_name) subquery2
from all_tables tbls;

In this example, we've created a subquery in the SELECT clause as follows:

(select count(column_name) as total_columns
 from all_tab_columns cols
 where cols.owner = tbls.owner
 and cols.table_name = tbls.table_name) subquery2

The subquery has been aliased with the name subquery2. This will be the name used to reference this subquery or any of its fields.

The trick to placing a subquery in the select clause is that the subquery must return a single value. This is why an aggregate function such as SUM, COUNT, MIN, or MAX is commonly used in the subquery.

Acknowledgements: We'd like to thank Peter for contributing to this solution!

SQL: UNION Query

The UNION query allows you to combine the result sets of 2 or more "select" queries. It removes duplicate rows between the various "select" statements.

Each SQL statement within the UNION query must have the same number of fields in the result sets with similar data types.

The syntax for a UNION query is:

select field1, field2, . field_n
from tables
UNION
select field1, field2, . field_n
from tables;

Example #1

The following is an example of a UNION query:

select supplier_id
from suppliers
UNION
select supplier_id
from orders;

In this example, if a supplier_id appeared in both the suppliers and orders table, it would appear once in your result set. The UNION removes duplicates.

Example #2 - With ORDER BY Clause

The following is a UNION query that uses an ORDER BY clause:

select supplier_id, supplier_name
from suppliers
where supplier_id > 2000
UNION
select company_id, company_name
from companies
where company_id > 1000
ORDER BY 2;

Since the column names are different between the two "select" statements, it is more advantageous to reference the columns in the ORDER BY clause by their position in the result set. In this example, we've sorted the results by supplier_name / company_name in ascending order, as denoted by the "ORDER BY 2".

The supplier_name / company_name fields are in position #2 in the result set.

Frequently Asked Questions

Question: I need to compare two dates and return the count of a field based on the date values. For example, I have a date field in a table called last updated date. I have to check if trunc(last_updated_date >= trun(sysdate-13).

Answer: Since you are using the COUNT function which is an aggregate function, we'd recommend using a UNION query. For example, you could try the following:

SELECT a.code as Code, a.name as Name, count(b.Ncode)
FROM cdmaster a, nmmaster b
WHERE a.code = b.code
 and a.status = 1
 and b.status = 1
 and b.Ncode <> 'a10'
 and trunc(last_updated_date) <= trunc(sysdate-13)
group by a.code, a.name
UNION
SELECT a.code as Code, a.name as Name, count(b.Ncode)
FROM cdmaster a, nmmaster b
WHERE a.code = b.code
 and a.status = 1
 and b.status = 1
 and b.Ncode <> 'a10'
 and trunc(last_updated_date) > trunc(sysdate-13)
group by a.code, a.name;

The UNION query allows you to perform a COUNT based on one set of criteria.

trunc(last_updated_date) <= trunc(sysdate-13)

As well as perform a COUNT based on another set of criteria.

trunc(last_updated_date) > trunc(sysdate-13)

SQL: UNION ALL Query

The UNION ALL query allows you to combine the result sets of 2 or more "select" queries. It returns all rows (even if the row exists in more than one of the "select" statements).

Each SQL statement within the UNION ALL query must have the same number of fields in the result sets with similar data types.

The syntax for a UNION ALL query is:

select field1, field2, . field_n
from tables
UNION ALL
select field1, field2, . field_n
from tables;

Example #1

The following is an example of a UNION ALL query:

select supplier_id
from suppliers
UNION ALL
select supplier_id
from orders;

If a supplier_id appeared in both the suppliers and orders table, it would appear multiple times in your result set. The UNION ALL does not remove duplicates.

Example #2 - With ORDER BY Clause

The following is a UNION query that uses an ORDER BY clause:

select supplier_id, supplier_name
from suppliers
where supplier_id > 2000
UNION ALL
select company_id, company_name
from companies
where company_id > 1000
ORDER BY 2;

Since the column names are different between the two "select" statements, it is more advantageous to reference the columns in the ORDER BY clause by their position in the result set. In this example, we've sorted the results by supplier_name / company_name in ascending order, as denoted by the "ORDER BY 2".

The supplier_name / company_name fields are in position #2 in the result set.

SQL: MINUS Query

The MINUS query returns all rows in the first query that are not returned in the second query.

Each SQL statement within the MINUS query must have the same number of fields in the result sets with similar data types.

The syntax for an MINUS query is:

select field1, field2, . field_n
from tables
MINUS
select field1, field2, . field_n
from tables;

Example #1

The following is an example of an MINUS query:

select supplier_id
from suppliers
MINUS
select supplier_id
from orders;

In this example, the SQL would return all supplier_id values that are in the suppliers table and not in the orders table. What this means is that if a supplier_id value existed in the suppliers table and also existed in the orders table, the supplier_id value would not appear in this result set.

Example #2 - With ORDER BY Clause

The following is an MINUS query that uses an ORDER BY clause:

select supplier_id, supplier_name
from suppliers
where supplier_id > 2000
MINUS
select company_id, company_name
from companies
where company_id > 1000
ORDER BY 2;

Since the column names are different between the two "select" statements, it is more advantageous to reference the columns in the ORDER BY clause by their position in the result set. In this example, we've sorted the results by supplier_name / company_name in ascending order, as denoted by the "ORDER BY 2".

The supplier_name / company_name fields are in position #2 in the result set.

SQL: UPDATE Statement

The UPDATE statement allows you to update a single record or multiple records in a table.

The syntax for the UPDATE statement is:

UPDATE table
SET column = expression
WHERE predicates;

Example #1 - Simple example

Let's take a look at a very simple example.

UPDATE suppliers
SET name = 'HP'
WHERE name = 'IBM';

This statement would update all supplier names in the suppliers table from IBM to HP.

Example #2 - More complex example

You can also perform more complicated updates.

You may wish to update records in one table based on values in another table. Since you can't list more than one table in the UPDATE statement, you can use the EXISTS clause.

For example:

	UPDATE suppliers
	

	SET supplier_name =
	(SELECT customers.name
FROM customers
WHERE customers.customer_id = suppliers.supplier_id)

	WHERE EXISTS
 (SELECT customers.name
 FROM customers
 WHERE customers.customer_id = suppliers.supplier_id);

Whenever a supplier_id matched a customer_id value, the supplier_name would be overwritten to the customer name from the customers table.

Learn more about the EXISTS condition.

SQL: INSERT Statement

The INSERT statement allows you to insert a single record or multiple records into a table.

The syntax for the INSERT statement is:

INSERT INTO table
(column-1, column-2, ... column-n)
VALUES
(value-1, value-2, ... value-n);

Example #1 - Simple example

Let's take a look at a very simple example.

INSERT INTO suppliers
(supplier_id, supplier_name)
VALUES
(24553, 'IBM');

This would result in one record being inserted into the suppliers table. This new record would have a supplier_id of 24553 and a supplier_name of IBM.

Example #2 - More complex example

You can also perform more complicated inserts using sub-selects.

For example:

INSERT INTO suppliers
(supplier_id, supplier_name)
SELECT account_no, name
FROM customers
WHERE city = 'Newark';

By placing a "select" in the insert statement, you can perform multiples inserts quickly.

With this type of insert, you may wish to check for the number of rows being inserted. You can determine the number of rows that will be inserted by running the following SQL statement before performing the insert.

SELECT count(*)
FROM customers
WHERE city = 'Newark';

Frequently Asked Questions

Question: I am setting up a database with clients. I know that you use the "insert" statement to insert information in the database, but how do I make sure that I do not enter the same client information again?

Answer: You can make sure that you do not insert duplicate information by using the EXISTS condition.

For example, if you had a table named clients with a primary key of client_id, you could use the following statement:

INSERT INTO clients
(client_id, client_name, client_type)
SELECT supplier_id, supplier_name, 'advertising'
FROM suppliers
WHERE not exists (select * from clients
where clients.client_id = suppliers.supplier_id);

This statement inserts multiple records with a subselect.

If you wanted to insert a single record, you could use the following statement:

INSERT INTO clients
(client_id, client_name, client_type)
SELECT 10345, 'IBM', 'advertising'
FROM dual
WHERE not exists (select * from clients
where clients.client_id = 10345);

The use of the dual table allows you to enter your values in a select statement, even though the values are not currently stored in a table.

Learn more about the EXISTS condition.

Question: How can I insert multiple rows of explicit data in one SQL command in Oracle?

Answer: The following is an example of how you might insert 3 rows into the suppliers table in Oracle.

INSERT ALL
 INTO suppliers (supplier_id, supplier_name) VALUES (1000, 'IBM')
 INTO suppliers (supplier_id, supplier_name) VALUES (2000, 'Microsoft')
 INTO suppliers (supplier_id, supplier_name) VALUES (3000, 'Google')
SELECT * FROM dual;

SQL: DELETE Statement

The DELETE statement allows you to delete a single record or multiple records from a table.

The syntax for the DELETE statement is:

DELETE FROM table
WHERE predicates;

Example #1 - Simple example

Let's take a look at a simple example:

DELETE FROM suppliers
WHERE supplier_name = 'IBM';

This would delete all records from the suppliers table where the supplier_name is IBM.

You may wish to check for the number of rows that will be deleted. You can determine the number of rows that will be deleted by running the following SQL statement before performing the delete.

SELECT count(*)
FROM suppliers
WHERE supplier_name = 'IBM';

Example #2 - More complex example

You can also perform more complicated deletes.

You may wish to delete records in one table based on values in another table. Since you can't list more than one table in the FROM clause when you are performing a delete, you can use the EXISTS clause.

For example:

DELETE FROM suppliers
WHERE EXISTS
 (select customers.name
 from customers
 where customers.customer_id = suppliers.supplier_id
 and customers.customer_name = 'IBM');

This would delete all records in the suppliers table where there is a record in the customers table whose name is IBM, and the customer_id is the same as the supplier_id.

Learn more about the EXISTS condition.

If you wish to determine the number of rows that will be deleted, you can run the following SQL statement before performing the delete.

SELECT count(*) FROM suppliers
WHERE EXISTS
 (select customers.name
 from customers
 where customers.customer_id = suppliers.supplier_id
 and customers.customer_name = 'IBM');

Frequently Asked Questions

Question: How would I write an SQL statement to delete all records in TableA whose data in field1 & field2 DO NOT match the data in fieldx & fieldz of TableB?

Answer: You could try something like this:

DELETE FROM TableA
WHERE NOT EXISTS
 (select *
 from TableB
 where TableA .field1 = TableB.fieldx
 and TableA .field2 = TableB.fieldz);

SQL: VIEWS

A view is, in essence, a virtual table. It does not physically exist. Rather, it is created by a query joining one or more tables.

Creating a VIEW
The syntax for creating a VIEW is:

CREATE VIEW view_name AS
SELECT columns
FROM table
WHERE predicates;

For example:

CREATE VIEW sup_orders AS
SELECT suppliers.supplier_id, orders.quantity, orders.price
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
and suppliers.supplier_name = 'IBM';

This would create a virtual table based on the result set of the select statement. You can now query the view as follows:

SELECT *
FROM sup_orders;

Updating a VIEW
You can update a VIEW without dropping it by using the following syntax:

CREATE OR REPLACE VIEW view_name AS
SELECT columns
FROM table
WHERE predicates;

For example:

CREATE or REPLACE VIEW sup_orders AS
SELECT suppliers.supplier_id, orders.quantity, orders.price
FROM suppliers, orders
WHERE suppliers.supplier_id = orders.supplier_id
and suppliers.supplier_name = 'Microsoft';

Dropping a VIEW
The syntax for dropping a VIEW is:

DROP VIEW view_name;

For example:

DROP VIEW sup_orders;

Frequently Asked Questions

Question: Can you update the data in a view?

Answer: A view is created by joining one or more tables. When you update record(s) in a view, it updates the records in the underlying tables that make up the view.

So, yes, you can update the data in a view providing you have the proper privileges to the underlying tables.

Question: Does the view exist if the table is dropped from the database?

Answer: Yes, in Oracle, the view continues to exist even after one of the tables (that the view is based on) is dropped from the database. However, if you try to query the view after the table has been dropped, you will receive a message indicating that the view has errors.

If you recreate the table (that you had dropped), the view will again be fine.

Example #2

The next example takes a look at three conditions. If any of these conditions is met, the record will be included in the result set.

SELECT supplier_id
FROM suppliers
WHERE name = 'IBM'
or name = 'Hewlett Packard'
or name = 'Gateway';

This SQL statement would return all supplier_id values where the supplier's name is either IBM, Hewlett Packard or Gateway.

