Retrieving Data from Multiple Tables with SQL Joins
Part 1: Introducing Joins
By way of example, let's return to our fictitious XYZ Corporation. XYZ utilizes an Oracle database to track the movements of their vehicle fleet and drivers between their facilities. Some employees are assigned to drive trucks while others are assigned to drive cars. Take a moment to examine the following two tables from their vehicle management database:

drivers
	Licensenum

	lastname

	firstname

	location

	class

	13232

	Baker

	Roland

	New York

	Car

	18431

	Smythe

	Michael

	Miami

	Truck

	41948

	Jacobs

	Abraham

	Seattle

	Car

	81231
	Ryan
	Jack
	Annapolis
	Car

vehicles
	Tag

	location

	class

	D824HA

	Miami

	Truck

	H122JM

	New York

	Car

	J291QR

	Seattle

	Car

	L990MT

	Seattle

	Truck

	P091YF

	Miami

	Car

Practical applications often require the combination of data from multiple tables. Our vehicle managers might make requests like the following:

· List all of the vehicle/driver pairings possible without relocating a vehicle or driver

· List all of the drivers authorized to drive vehicles located in Miami

Granted, it would be possible to create complex SELECT statements using subqueries to fulfill these requests. However, there's a much simpler method -- the use of inner and outer joins.

Part 2: Inner Joins (Equijoins)

Inner joins (also known as equijoins) are used to contain information from a combination of two or more tables. The join condition determines which records are paired together and is specified in the WHERE clause. For example, let's create a list of driver/vehicle match-ups where both the vehicle and driver are located in the same city. The following SQL query will accomplish this task:

SELECT lastname, firstname, tag FROM drivers, vehicles WHERE drivers.location = vehicles.location

And let's take a look at the results:

lastname
firstname
tag

Baker

Roland

H122JM
Smythe

Michael

D824HA
Smythe

Michael

P091YF
Smythe

Michael

P091YF
Jacobs

Abraham
J291QR
Jacobs

Abraham
L990MT
Notice that the results are exactly what we sought. It is possible to further refine the query by specifying additional criteria in the WHERE clause. Our vehicle managers took a look at the results of our last query and noticed that the previous query matches drivers to vehicles that they are not authorized to drive (e.g. truck drivers to cars and vice-versa). We can use the following query to resolve this problem:

SELECT lastname, firstname, tag, vehicles.class FROM drivers, vehicles WHERE drivers.location = vehicles.location AND drivers.class = vehicles.class

Notice that in this example we needed to specify the source table for the class attribute in the SELECT clause. This is due to the fact that class is unambiguous – it appears in both tables and we need to specify which table’s column should be included in the query results. In this case it does not make a difference as the columns are identical and they are joined using an equijoin. However, if the columns contained different data this distinction would be critical. Here are the results of this query:

Lastname
FirstName
Tag

Class

Baker

Roland

H122JM

Car
Smythe
Michael

D824HA
Truck
Jacobs

Abraham
J291QR

Car

Notice that the rows pairing Michael Smythe to a car and Abraham Jacobs to a truck have been removed.
Part 3: Outer Joins :Outer joins allow database users to include additional information in the query results.

Take a moment and review the database tables located on the first page of this article. Notice that we have a driver -- Jack Ryan -- who is located in a city where there are no vehicles. Our vehicle managers would like this information to be included in their query results to ensure that drivers do not sit idly by waiting for a vehicle to arrive. We can use outer joins to include records from one table that have no corresponding record in the joined table. Let's create a list of driver/vehicle pairings that includes records for drivers with no vehicles in their city. We can use the following query:

SELECT lastname, firstname, driver.location, tag FROM drivers, vehicles WHERE drivers.location = vehicles.location (+)

Notice that the outer join operator "(+)" is included in this query. This operator is placed in the join condition next to the table that is allowed to have NULL values. This query would produce the following results:

lastname
firstname
driver.location
tag

Baker

Roland

NewYork
H122JM
Smythe

Michael

Miami

D824HA
Smythe

Michael

Miami

P091YF
Jacobs

Abraham
Seattle

J291QR
Jacobs

Abraham
Seattle

L990MT
Ryan

Patrick
Annapolis

This time our results include the stranded Patrick Ryan and our vehicle management department can now dispatch a vehicle to pick him up.

Note that there are other possible ways to accomplish the results seen in this article and syntax may vary slightly from DBMS to DBMS. These examples were designed to work with Oracle databases, so your mileage may vary. Furthermore, as you advance in your knowledge of SQL you’ll discover that there is often more than one way to accomplish a desired result and oftentimes one way is just as good as another. Case in point, it is also possible to specify a join condition in the FROM clause rather than the WHERE clause. For example, we used the following SELECT statement earlier in this article:

SELECT lastname, firstname, tag FROM drivers, vehicles WHERE drivers.location = vehicles.location AND drivers.class = vehicles.class
The same query could be rewritten as:

SELECT lastname, firstname, tag FROM drivers INNER JOIN vehicles ON drivers.location = vehicles.location WHERE drivers.class = vehicles.class
