	

	


Creating a Self-Join Query to relate data within a table in Microsoft Access:

When working with Microsoft Access Queries you will no doubt work with a range of join types, from the default Inner Join to the more complicated Outer Joins. In some cases, however, the related data is all within a single table. In this situation you will use a special join type that can be used to retrieve the desired data.

This type of relationship does not exist between multiple database tables, it is actually a relationship that exists between the records within a single database table.

Consider the scenario where all of the data you require is contained within a single table, but you may need to be able to relate columns within that table to each other to extract the desired data. Usual examples of this type of data relate to Employee information, where the table may have both an Employee's ID number for each record and also a field that displays the ID number of an Employee's supervisor or manager.

To retrieve the data you need to be able to relate the data to itself. For this purpose the Self-Join is designed to do exactly this action.

Self-Joins
The Self-Join is a join that relates data in a table to itself. A table is joined to itself based upon a field or combination of fields that have duplicate data in different records. The data-type of the inter-related columns must be of the same type.

You will be able to see in the example below an example of a single table that contains related data. The lngID field and the lngSupervisorID fields are of the same data type and contain the same data across different records:

[image: image1.png]
How do we relate Date within a single Table?
To Create a Self-Join

· Open a query in Design View 

· Click on the Show Table button 

· Add the table to your query so that it appears twice 

· Join the related fields 

· Complete the query design by adding the fields that you want to display in the grid 

Using an Alias
When adding the same database table to the query design grid multiple times, it is a good idea if you change the name of one of the tables. When you assign an alias to a table in the query design grid, you are not renaming the underlying table.

Creating a Self Join Query
If you consider the above example, where we would need to design a query to display the Supervisors names for each Employee in our database. Our table contains information about Employees and their Supervisors, with the Supervisor being identified by his/her EmployeeID number.

[image: image2.png]
In order for us to design a query that will display the Supervisor name for each Employee held in the database table we will need to relate the lngEmpID field and the lngSupervisorID field.

In a new query design grid we will add the tblSupervisors table twice as shown below:

[image: image3.png]
You will see that this assigns the same table name again, followed by an underscore and number. We will assign an alias to the second table by right-clicking on the second table and choosing to display the properties menu.

In the Alias property box, type in the new name that you will alias the table with and close the property dialog as shown below:

[image: image4.png]
We can now create the self-join based upon the lngSupervisorID from the Supervisors table and the lngEmpID from the newly named Managers table by dragging one field to the other:

[image: image5.png]
We can now add the required fields to the query design grid. In this example, we are going to add the strFirstName and the strLastName fields from the tblSupervisors field list and the strLastName from the Managers field list.

[image: image6.png]
We should now change the caption of the strLastName field that will display the data from the Managers table as at present we have two strLastName fields. In the design grid, we shall right-click on the strLastName field from the Managers table and choose Properties. This will display the field properties dialog box where we can set a new caption:

[image: image7.png]
We should repeat this process to rename the strLastName field of tblSupervisors to show just LastName.

Now when we run the query we will be able to see the Employee's First and Last Names and also the Last Name (ManagerName) of their manager. An example of the results is shown below:

[image: image8.png]
Welcome to our continuing saga about SQL JOIN statements. We've spent the past few columns looking at the syntax and behavior of the inner join, the most commonly used type of join. This week, we'll take a look at what's going on behind the scenes when you perform a join and use that as a launching point to discuss the many different types of join statements that are supported by SQL.

[image: image9.png][image: image10.png]
How does a join work?
One of the fundamental challenges in understanding SQL is becoming comfortable with thinking about data in terms of mathematical sets and relational algebra. This is the similar to the challenge procedural programmers face when making the transition to object-oriented languages -- things are just simply different and the old rules simply don't apply. Joins force you to think in a set-oriented way. That is one of the reasons why they are one of the most difficult parts of SQL to learn.

So what actually happens when a join is executed? We can start with the simplest possible join -- the "cross join" (or Cartesian product). If we have two database tables consisting of information about CDs and musical artists:

	Artists

	ArtistID
	ArtistName

	1
	Peter Gabriel

	2
	Bruce Hornsby

	3
	Lyle Lovett

	4
	Beach Boys


	CDs

	CDID
	ArtistID
	Title
	Year

	1
	1
	So
	1984

	2
	1
	Us
	1992

	3
	2
	The Way It Is
	1986

	4
	2
	Scenes from the Southside
	1990

	5
	1
	Security
	1990

	6
	3
	Joshua Judges Ruth
	1992

	7
	4
	Pet Sounds
	1966


A join simply multiplies the two tables together into a new virtual table. There are four members of the Artists table and seven members in the CDs table which will result in 28 (!) rows in the result. You can try this using the following syntax,

SELECT * FROM Artists, CDs
and you should see a result that looks like the following table:

	CDID
	CDs.ArtistID
	Artists.ArtistID
	ArtistName
	Title
	Year

	1
	1
	1
	Peter Gabriel
	So
	1984

	1
	1
	2
	Bruce Hornsby
	So
	1984

	1
	1
	3
	Lyle Lovett
	So
	1984

	1
	1
	4
	Beach Boys
	So
	1984

	2
	1
	1
	Peter Gabriel
	Us
	1992

	2
	1
	2
	Bruce Hornsby
	Us
	1992

	2
	1
	3
	Lyle Lovett
	Us
	1992

	2
	1
	4
	Beach Boys
	Us
	1992

	3
	2
	1
	Peter Gabriel
	The Way It Is
	1986

	3
	2
	2
	Bruce Hornsby
	The Way It Is
	1986

	3
	2
	3
	Lyle Lovett
	The Way It Is
	1986

	3
	2
	4
	Beach Boys
	The Way It Is
	1986

	4
	2
	1
	Peter Gabriel
	Scenes from the Southside
	1990

	4
	2
	2
	Bruce Hornsby
	Scenes from the Southside
	1990

	4
	2
	3
	Lyle Lovett
	Scenes from the Southside
	1990

	4
	2
	4
	Beach Boys
	Scenes from the Southside
	1990

	5
	1
	1
	Peter Gabriel
	Security
	1990

	5
	1
	2
	Bruce Hornsby
	Security
	1990

	5
	1
	3
	Lyle Lovett
	Security
	1990

	5
	1
	4
	Beach Boys
	Security
	1990

	6
	3
	1
	Peter Gabriel
	Joshua Judges Ruth
	1992

	6
	3
	2
	Bruce Hornsby
	Joshua Judges Ruth
	1992

	6
	3
	3
	Lyle Lovett
	Joshua Judges Ruth
	1992

	6
	3
	4
	Beach Boys
	Joshua Judges Ruth
	1992

	7
	4
	1
	Peter Gabriel
	Pet Sounds
	1966

	7
	4
	2
	Bruce Hornsby
	Pet Sounds
	1966

	7
	4
	3
	Lyle Lovett
	Pet Sounds
	1966

	7
	4
	4
	Beach Boys
	Pet Sounds
	1966


This table is typically filtered using the WHERE clause, for example

SELECT * FROM Artists, CDs WHERE Artists.ArtistID=CDs.ArtistID
which leads us to another nugget of SQL wisdom

SQL Wisdom #6) Using a cross join is almost always a bad idea
A cross join will typically bring your database to its knees since the amount of work increases as a multiple of the number of rows -- this does not scale linearly!

 Other types of JOINs
We've covered two types of joins so far, but there are many more. To whet you appetite for the upcoming columns, the major types of joins we'll cover include

· CROSS JOIN (Cartesian product) is the simplest join, which we covered today; 

· INNER JOIN (sometimes called the "EQUI-JOIN") where tables are combined based on a common column; 

· OUTER JOIN which involves combining all rows of one table with only matching rows from the other table and next week's topic; and the 

· SELF JOIN which is a table joined to itself. 

The world of joins is another one of those pleasant corners of the SQL world where there is a lot of differentiation between database platforms as far as specific syntax and even which types of joins are supported. We'll cover the big picture for each type of join, but will only point out an whopping differences between the platforms. It is crucial when you are working with any complicated join, particularly one that involves multiple tables or nested joins, that you check you DBMS documentation to make sure that your approach is supported.

